LTE for Mobile Broadband Access

Dr. Michael Meyer

Ericsson Research, Aachen

Multimedia - Changing the industry

Just like mobile telephony once did

Source: OVUM, Strategy Analytics & Internal Ericsson

ERICSSON 🗲

3GPP Long Term Evolution (LTE)

2003/4 2005/6 2007/8 2009/10 2011/12

Ensure 3GPP competitiveness into the "4G" era (IMT-Advanced)

3G LTE

HSPA evolution

HSPA

WCDMA

- Expansion to wider bandwidth
- Both paired and unpaired spectrum
- New radio access

Overall LTE Work Plan

High data rates

Downlink: >100 Mbps

Uplink: >50 Mbps

Cell-edge data rates
2-3 x HSPA Rel. 6

ERICSSON 🗲

High data rates

- Downlink: >100 Mbps
- Uplink: >50 Mbps
- Cell-edge data rates2-3 x HSPA Rel. 6

Low delay/latency

- User plane RTT: <10 ms
- Channel set-up: <100 ms

High data rates

- Downlink: >100 Mbps
- Uplink: >50 Mbps
- Cell-edge data rates2-3 x HSPA Rel. 6

Low delay/latency

- User plane RTT: <10 ms
- Channel set-up: <100 ms

High spectral efficiency

Targeting 3 X HSPA Rel. 6

High data rates

- Downlink: >100 Mbps
- Uplink: >50 Mbps
- Cell-edge data rates2-3 x HSPA Rel. 6
- Low delay/latency
 - User plane RTT: <10 ms
 - Channel set-up: <100 ms
- High spectral efficiency
 - Targeting 3 X HSPA Rel. 6
- High Performance Broadcast services

High data rates

- Downlink: >100 Mbps
- Uplink: >50 Mbps
- Cell-edge data rates2-3 x HSPA Rel. 6

Low delay/latency

- User plane RTT: <10 ms
- Channel set-up: <100 ms
- High spectral efficiency
 - Targeting 3 X HSPA Rel. 6
- High Performance Broadcast services
- Cost-effective migration

LTE/SAE - Overall Architecture (simplified)

EPC: Evolved Packet Core

MME: Mobility Management Entity

Key LTE radio access features

LTE radio access

Downlink: OFDM

Uplink: SC-FDMA

© Ericsson AB 2008 2008-02-28 ITG 5.2.4 Workshop 11

The downlink physical resource

A "time-frequency" grid

- Time domain structure:
 - 10 ms Frame consisting of 10 Subframes of length 1 ms
 - Each subframe consisting of 2 Slots of length 0.5 ms
 - Each slot consisting of 7 OFDM symbols (6 symbols in case of extended CP)
- Resource blocks:
 - 12 sub-carriers during one slot
 - Assigned in pairs of two consecutive resource blocks

ERICSSON

Key LTE radio access features

LTE radio access

Downlink: OFDM

Uplink: SC-FDMA

Advanced antenna solutions

- Diversity
- Beam-forming
- Multi-layer transmission (MIMO)

ERICSSON **#**

13

Advanced Antenna Schemes

14

ERICSSON 🗾

Key LTE radio access features

LTE radio access

- Downlink: OFDM
- Uplink: SC-FDMA

Advanced antenna solutions

- Diversity
- Beam-forming
- Multi-layer transmission (MIMO)

Spectrum flexibility

- Flexible bandwidth
- New and existing bands
- Duplex flexibility: FDD and TDD

ERICSSON **S**

LTE – Spectrum flexibility

- Allow for operation in a wide range of different spectrum
 - Current and future 3G spectrum (2 GHz, 2.6 GHz, ...)
 - Migration of 2G spectrum (e.g. 900 MHz)
 - Re-farming of other spectrum, e.g. UHF bands
- Uncertain size of future spectrum assignments
- Efficient operation in differently-sized spectrum allocations
 - Up to 20 MHz to enable very high data rates
 - Less than 5 MHz to enable smooth spectrum migration

Need for flexible transmission bandwidth

© Ericsson AB 2008 ITG 5.2.4 Workshop 16 2008-02-28 **ERICSSON**

LTE - Bandwidth flexibility

LTE physical layer supports any bandwidth from ~1.25 MHz to well beyond 20 MHz in steps of ~200 kHz (one "Resource Block")

- RF complexity/requirements limit set of bandwidths actually supported
 - e.g. 1.25 MHz, 1.8 MHz, 5 MHz, 10 MHz, 20 MHz

All LTE terminals must support the maximum bandwidth (up to 20 MHz)

© Ericsson AB 2008 ITG 5.2.4 Workshop 17 2008-02-28

User Plane Protocol Stack

PDCP, RLC, MAC and PHY terminated in eNode

⁻²⁸ ERICSSON ≸

User Plane Data Flow **Higher Layer PDU** Higher Layer PDU . Higher Layer PDU Radio Bearer 2 Radio Bearer 1 Radio Bearer 1 Higher Layer Payl Higher Layer Payl. Higher Layer Payl. PDCP Н (Header Comp. & Ciphering) **PDCP** PDCP PDCP PDCP SDU **PDCP SDU PDCP SDU** <u>header</u> <u>header</u> header **RLC RLC SDU RLC SDU RLC SDU** (segm. & concatenation) RLC RLC RLC <u>header</u> header header **RLC PDU** RLC PDU **RLC PDU** MAC MAC MAC MAC SDU MAC SDU header header (multiplex.) MAC PDU MAC PDU PHY **CRC CRC Transport Block** Transport Block

ERICSSON **S**

Segmentation/Concatenation/Multiplexing

ERICSSON 🗾

ARQ & HARQ Retransmission Unit

⁰²⁻²⁸ ERICSSON **≨**

Three (future) user scenarios

