

Mitnehm.TV Personalized Robust Mobile TV in Converging Networks

VDE/ITG-Fachgruppe 5.2.4 Workshop: Mobile TV – Quo Vadis?

Dr.-Ing. Dirk Kutscher, TZI Dr. Peter Schefczik, Alcatel-Lucent, Bell Labs Europe Dr. Michael Söllner, Alcatel-Lucent, Bell Labs Europe

Trends in Mobile Multimedia

- Multiple distribution networks, multiple applications
 - Applications and user behavior becoming independent of specific distribution approach ("convergence")
- "Long-tail" content becoming increasingly important, cannot broadcast everything
- Users want to decide what, when and where to watch
 - Public content ("TV") and private media assets
 - Fixed (living room) and mobile usage

Personalized TV: access live TV and archived content from personal devices

ScaleNet – An Architecture for a Next Generation Wireless/Wireline Convergent Access Network

ScaleNet – Demonstrating the Value Proposition of Wireless/Wireline Convergent Access

Quadruple Play = Voice, Data, Video plus Mobility

Main research direction, technology view:

- Push the frontiers between access technologies out to the user / edge
- Unified Router (UR) technology supports different access technologies (WIMAX, UMTS, xDSL, ...) in one IP-based node
- Flat IP-driven network architecture with joint (wireless/wireline, convergent) control
- Open for rapid introduction of new access technologies
- Seamless integration into ITU-T NGN standardization framework both with IMS and non-IMS service control

Need for demonstrating the value for the user and the service provider:

- Quadruple play applications and services
 - Ubiquitous service around ScaleNet use cases: scenarios at home, and on the move
 - Aiming at a personalized combination of IP-TV, telecommunications and Mobile-TV as an attractive quadruple multimedia showcase
- Fixed-mobile service convergence
 - Session continuity regardless of access technology or end user device
- Easy fixed-mobile network convergence through flat networks
- Basic functionalities of a flat all-IP broadband architecture utilizing Base Station Router (BSR) and a flat IP infrastructure

ScaleNet Scenario for Truly Converged Quadruple Play Services: IPTV and Mobile-TV

- ALU Use Case: "Session Mobility for a Convergent IPTV Service"
- IPTV service over unified wireless or wireline IP network with convergent control (resource and mobility management)
 - Seamless session continuity and handover
- Robust transmission for personalized mobile service

Universität Bremen

Scenarios

- IPTV Home scenario, via (V)DSL
 - Live-TV (Multicast)
 - Video-Streaming (Video-on-Demand)
 - IMS-like user services (Presence, Reachability) and interaction with telecom services
 - Personalized Video Recorder
 - Personalized Information Streams
- Mobile Video/TV on the move, via UMTS/HSPA, WLAN etc
 - Multiple causes for interruptions: technical, social
 - Redirect multimedia stream to mobile device
 - Bridging gaps seamlessly in transmission requires personalization instead of multicast/broadcast services
 - Enriched by personalized information services

Alcatel·Lucent 🅢

Side Note: 3GPP Solution: RTSP-based Mobile-TV

Side Note: 3GPP Solution: RTSP-based Mobile-TV

- RTP und RTSP over 3G data channel
- Optionally: "Fast channel switching"
 - Persistent RTP session •
 - Channel switching on server

Mobility management

- On 3G layer
- RTSP session bound to IP address

Robustness

- Some robustness by video codec (H.263, H.264)
- FEC potentially used, but probably not in practice (bandwidth)

Result: Interruptions not robustly dealt with

- Blocking video streams
- Interrupted sessions

Concepts and Tasks (ScaleNet Requirements)

- Session mobility for personalized media streaming
 - Transferring personal video streaming sessions between multiple user devices
 - Centralized live-pause approach
 - Adaptation to user device capabilities
 - Information services (news, messages)
- Robust video streaming
 - Disruption-tolerance support beyond codec and RTP robustness features
 - Support for interrupting and resuming sessions at arbitrary times
 - Support for varying paths characteristics (bandwidth) by content adaptation
- Integration with other personal information services
 - Presence and Messaging
 - Access to web-based media resources

Session Mobility

- Requirements
 - Personal session
 - Suspend-resume capabilities
 - Independent of device, network access

- Approach
 - Multi-user concept on streaming servers and shared client devices
 - Handover support (between user devices)
 - Adaptation to specific device capabilities

Robust Video Streaming

- Requirements
 - Tolerate disconnections and varying network characteristics
 - Streaming session independent of user device and current point of network attachment
- Approach
 - Session concept for video streaming
 - Video chunk based distribution instead of realtime streaming
 - Server and user device maintain user's session state (playout time)
 - Session state independent from transport session state

Universität Bremen

Mitnehm.TV: Video Sources

Mitnehm.TV: Media Server

Mitnehm.TV: Home-TV

- Update userspecific playback state (channel and playtime)
- Show program guide

Mitnehm.TV: Mobile-TV

- Continue playback from last state
- Requests videostream from server
- Regularly send state updates to server
- Prefetch buffer, to compensate
 - **Connection loss**
 - Lower throughput periods
- Request reduced quality

Robust Video Transport

- From Real-time-Streaming to Video-Chunk-Delivery
 - File-transfer paradigm for video-streaming
 - Reliable transport sessions (here: HTTP/TCP)
 - Client requests video chunks starting from specific timestamps
- Opportunistic network usage and aggressive buffering
 - Use network resources as they become available
 - Try to buffer as much data ahead of time as possible
 - Use buffered data during disconnection times
- Suitable codecs and video file formats
 - Disruption-friendly codec required
 - Video file formats instead of RTP payload formats
 - Different formats available: AVI, MP4, Matroska
 - Not all of them are suitable for streaming mode of operation

Video Codecs

- Codec requirements
 - Efficiency, compatibility with existing players and encoders
 - Disruption-friendly: seeking in video-streams without requiring too much history
- Current state-of-the-art for 3G video streaming: H.264 (MPEG4-Part10)
 - Most efficient codec available today
 - Modular specification not completely implemented
 - Does not require intra-frames at regular intervals difficult to achieve random seek with available encoders
- Mitnehm.TV solution
 - MPEG4-Part2 (with codecs such as DivX, Xvid)
 - Less efficient compression but more robust for disrupted usage and better software player support

Video Container Formats

- Format requirements
 - Streamable: seeking within video stream
 - Disruption-friendly: resume interrupted sessions
 - Support for Live-TV: Streaming of not-yet-finalized video files
- Current state-of-the-art for 3G video streaming: H.264 and AAC over RTP (MPEG4-Part8)
 - Real-time packet stream at continuous rates
 - Not applicable for opportunistic network usage and disruption-tolerance
- IPTV approach: MPEG Transport Streams (MPEGTS)
 - Currently defines for MPEG-1 and MPEG-2
 - DVB-S2 defines H.264 in transport streams, but not commonly supported by players to date
- Mitnehm.TV solution
 - File format based approach

File Format Based Transport

- Proposed file format for MPEG4: MP4
 - Typically used with H.264 and AAC (based on QuickTime's MOV format)
 - Implemented in most current multimedia phones
 - However: not streamable!
 - Sample to Chunk Box and Chunk Offset Box index headers required by container format
 - Cannot send video file while it is still being created
 - Also: insufficient support for dynamic cutting (resume)
- Mitnehm.TV solution
 - Matroska file format developed by CoreCodec
 - Designed for streaming of live content: optional index
 - Supports adding dedicated video frames to facilitate cutting and resuming
 - Supported by some software players

Alcatel Lucent

Implementation

Settop box client

- Based on Freevo, TZI's home theater platform
- MPEG4-Part2 @ 720x576, 25fps, Matroska format
- Bitrate: 1 MBit/s for video, 128 KBit/s for AAC audio

PC platform client

- Touchscreen-based GUI, 1024x768
- UMTS-HSDPA (Qualcomm chipset)
- MPEG4-Part2 @ 320x240, 25 fps, Matroska format
- Bitrate: 300 KBit/s for video, 48 KBit/s for AAC audio

Mobile phone client

- J2ME-based
- MPEG4-Part2 @ 352x288, 15 fps, MP4 format
- 60 KBit/s for video, 12.2 KBit/s for AAC audio

Universität Bremen

Mobile Phone Implementatior

- GUI approach: J2ME client
 - Phone look and feel
 - Similar interface to the server •
- Some adaptations
 - Mobile phone limitations with streamed files: cannot use dynamic pre-fetching
 - Chunks of 60 seconds with parallel download and playout ۲
 - MP4 container format ۲

© 2007 TZI, Alcatel-Lucent

Integration with Other Personal Information Services

- Objective: creating a blended services platform centered around Mobile TV
- Personal News ticker
 - Interface to RSS/Atom feeds
 - Server monitors feeds and notifies client asynchronously upon changes
- Integration with SIP-based presence services
 - Interface for external services on server side
 - Asynchronous events such as alarms, personal presence state changes etc.

Conclusions

- Personalized video services important differentiated service in future mobile TV service set
- Robustness and disconnection-tolerance important for enhancing usability in mobile scenarios
- Approach: moving from real-time streaming to chunk-based transport
- Mitnehm.TV: a pragmatic solution for demonstrating future converged network based service potentials
- Fully implemented prototype for UMTS-HSDPA and WLAN-based access networks
- Outlook:
 - Improve opportunistic network usage
 - Standards-based IMS integration
 - Richer set of video services (e.g. Video-Podcast support, adaptors to YouTube etc.)

Danke!

Dirk Kutscher <<u>dku@tzi.org</u>>

www.tzi.org/~dku