

Application of Distributed Database Concepts to RAN Configuration Management

Henning Sanneck, Christoph Schmelz Nokia Siemens Networks

Alan Southall, Joachim Sokol, Christian Kleegrewe, Christoph Gerdes Siemens Corporate Technology

VDE/ITG Workshop "Network Databases", May 21st, 2007.

Outline

Goal

Automated assurance of network-wide configuration data consistency

Use cases: Network optimization and growth

Example: cell adjacency management

Proposed solution: Transaction-oriented CM data management subsystem

Integration into the element management architecture

Conclusions

General problem statement

Requirement for an element management system (EMS):

The consistency of configuration data

- Between NEs and EMS
- Between NEs (dependencies)

needs to be assured at all times.

Error sources	Description	
Non-ideal system	O&M network links: limited bandwidth, link interruptions,	
components	NEs may fail	
Concurrency	Multiple sources of configuration changes (planning, multiple	
	operators, local changes)	
Limited roll-out time	e Service-affecting configuration changes can only be rolled	
	out during defined time windows (night hours, weekends)	
Logical errors	Misconfiguration (human factor)	

→ Application of Distributed Database Concepts (bi-directional synchronization, locking / rollbacks → transactions)

Specific problem statement for RAN Configuration Management (3G and beyond)

Category	RAN CM property	Requirements to a full solution
Roll-out	Few dependencies* comprising only small NE groups, but	Assurance of inter-NE consistency
phase	crucial and existent in numerous NE	with adaptive commit strategy (not
		just 2PC**)
	Current management protocols: inefficient for delta	Transaction-oriented protocol
	configuration	
	NEs need to function autonomously ("NE is the master of	Transactions at NE (& EMS) level
	its data"), but no atomic operation at NE	
	Lack of speed	Parallelization of transactions
Alignment	Bulk alignment → reduced up-to-dateness	Delta alignment
phase		
Non-	Low O&M link bandwidth (Node B today: 128 kbit/s)	Bandwidth efficiency
functional	O&M link on microwave (Node B); planning / operator /	Robustness, "online" assurance of
properties	local configuration changes	consistency
	Numerous NE	Scalability
	Manual work (NE configuration) in case of errors (→	Efficiency through automation
	downtime)	(network configuration)

[•]Dependencies: cell handover adjacencies, transport connections, security information

^{** 2}PC: Two-phase commit: all NE of a group signal "ready to commit"; EMS triggers commit

Use cases in RAN Configuration Management (3G and beyond)

Network optimization (Prio 1):

- Large radio network plan update
 - Example: regular plan exchange (monthly), e.g., to improve load balancing among RNCs (radio), minimize leased line expenditures (transport), accommodate changed user requirements due to an upcoming event
- Manual update of radio network covering multiple NE
 - Examples: correct radio configuration deficiency covering several RNCs, reconfiguration of a Node B cascade

Network growth (Prio 2):

Addition / rehoming of Node Bs(attention of human operator required anyway, support useful)

Assumptions for the evolution of the use cases:

- Distribution: numerous NE involved in CM (3G LTE), increasing number of NE
- Dynamics: more frequent reconfiguration of NEs to satisfy changing user demands (enabler: remote electric antenna tilting) \rightarrow >1 network plan per network, change of plan over time (of day, of year)
- Diversity: integrated heterogeneous access networks (3G/3G LTE/WiMaxe) Diversity: integrated heterogeneous access networks

Example workflow for adjacency management: today

Example workflow for adjacency management: future

Generic master-replica data management model

Integration into the element management architecture

Policy Examples for Automated Rescheduling / Rollback

Policy properties:

- hierarchically organized (atomic and derived polices)
- tool-box supporting remote editing
- optimizing and learning process
- smooth migration and development possible
- high-level language necessary
- monitoring, tracing, evaluation (appropriate GUI requested)
- complexity vs. automation
- transparency vs. control
- potential for OPEX reduction
- → policy environments for automated rescheduling and rollback are feasible already now, with IPDE as long-term goal

Proposed solution: master-replica data management subsystem

Category	Requirements to a	Solution properties	
	full solution		
Roll-out	Assurance of inter-NE	Transaction compiler: generates transactions from delta between	
phase	consistency	recent and planned view (input: dependencies, execution plan)	
	Transactions at EMS level	Transaction manager: rolls-out and monitors transactions	
	Parallelization		
	Automation		
	Transaction-oriented protocol	Transaction-oriented protocol between master / replica (=NE),	
		transactions at replica	
Alignment	Delta alignment	Middleware (Transaction manager): controls access to master by	
phase		replicas	
		Protocol: delta updates as transactions	
Non-	Bandwidth efficiency	Protocol: delta configuration changes	
functional	Robustness, "online"	Middleware: concurrency awareness	
properties	assurance of consistency	Protocol: reliable messaging, transactions	
	Scalability	Protocol / Middleware: several 100 replicas tested	
	Efficiency through automation	Middleware: network (not NE)-level interface	

Summary

Conclusions

- Improvement of CM data consistency (NE/EMS & inter-NE), degree of automation
 - Manufacturer: reduced and simplified CM software development:
 - State-of-the-art data management technology can be applied
 - Applications do not need to consider low-level data consistency
 - Mobile Network Operator:
 - OPEX reduction (less (skilled) operational personnel needed)
 - Increasingly important with 3G RAN evolution (LTE)
- Parallel operation to legacy CM protocols possible
- Partial introduction possible (transaction manager at EMS only)
- Info model upgrades can be nicely integrated into the roll-out process
- Proof-of-concept implementation has been done at Nokia Siemens Networks
- Future work: policy development process (encapsulating human operator's knowledge) based on operational experience

