

VoIP over Wireless Opportunities and Challenges

Dirk Staehle Universität Würzburg Lehrstuhl für verteilte Systeme

Voice-over-IP over Wireless (VoIPoW)

Overview

- - Motivation and Advantages
 - Current problems and challenges
- - IEEE802.11 WLAN
 - IEEE802.16 WiMAX
 - UMTS
- ▶ Conclusion

Why VoIP over Wireless?

VoIP and VoIPoW

- Aspects of VoIP
 - signaling and connection management (SIP, H.323, Skype, IMS...)
 - transport protocol (RTP)
 - voice codec
 - play-out buffer
 - packet loss concealment (FEC, ...)
 - jitter, packet loss, delay
- Additional aspects of VolPoW
 - mobility management (MobileIP, VHO, IMS, ...)
 - properties of radio transmission
 - high bit error rate
 - time-variant channel
 - limited, expensive bandwidth
 - different radio access technologies

must fit to each other

Problems, Challenges, Solutions

- Desired: high spectral efficiency
 - problem: small packets, large header
 - RTP/UDP/IP header avoidable through header compression
 - problem: MAC layer overhead
 - frame aggregation
 - problem: no delivery of erroneous packets
 - voice codec could deal with rare bit errors
 - MAC/UDP require correct packets
 - higher SIR, more robust transmission, more retransmissions
- Desired: low packet loss, delay, and jitter
 - problems:
 - retransmissions
 - random access/medium access
 - scheduling
 - time-variant channel quality
 - solutions:
 - play-out buffer, adaptive codec, packet loss concealment

VoIP over Wireless LAN

- ▶ IEEE802.11abg
 - random access on up- and downlink
 - no service differentiation
 - bad spectral efficiency
 - alternative: polling with PCF (point coordination function)
- ▶ IEEE802.11e
 - service differentiation
 - dedicated resource allocation with HCCA (Hybrid Control Function Controlled Channel Access)
- Header compression is possible but not used
- Future challenges
 - admission control
 - adaptive contention parameters

VoIP over IEEE802.11g/e with Header Compression

- Contention parameters for VoIP support decrease VoIP capacity
 - adaptive contention parameters
- Small benefits from header compression

VoIP over WiMAX (IEEE 802.16)

- Possible scheduling services in WiMAX
 - UGS (Unsolicited Grant Service)
 - essentially a dedicated channel
 - no support for silence suppression on uplink
 - rt-PS (real-time Polling Service)
 - regular dedicated bandwidth request opportunities
 - support for silence suppression on uplink
 - BE (Best Effort)
 - not intended for VolP
 - contention based bandwidth requests
 - collision free data transmission
 - introduces delay and jitter
- Problem: Services intended for VoIP (UGS, rt-PS) require detailed traffic characteristics and provide detailed QoS
 - VoIP e.g. Skype transmitted over BE

VoIP over Best-Effort Connections in Fixed WiMAX

- Performance of VoIP connections over BE service
- ▶ No background traffic, no packet loss, no header compression
- → 5MHz TDD

10ms frame, QPSK, ½ code rate

5ms frame, 16QAM, 3/4 code rate

VoIP over UMTS

- Typical: circuit-switched voice over dedicated channels using AMR codec (Adaptive Multi-Rate)
- VoIP transmission as "normal" data traffic on DCH/HSDPA
 - typically no service differentiation

> Future:

- IMS, special dedicated channels for VoIP
- Special support for VoIP over HSDPA/HSUPA? Scheduling disciplines
- VoIP in UTRA LTE
 - enhanced VoIP capacity by enhanced transmission techniques?
- ▷ CDMA2000 1x EV-DO Rev A
 - similar to HSDPA/HSUPA
 - special support for VoIP

Skype over UMTS

- T. Hoßfeld, A. Binzenhöfer, M. Fiedler, K. Tutschku, Measurement and Analysis of Skype VoIP Traffic in 3G UMTS Systems, IPS-MoMe 2006

- considerable jitter
- PESQ ~2.2 instead of ~3 in bottleneck LAN with 64 kbps
- packet inter-arrival time deterministic
 - PESQ ~2.5 instead of ~3 in bottleneck LAN with 128 kbps

Outlook to the Future

- ▷ Development of VolPoW
 - current codec optimized for circuit-switched data
 - development of special codecs for VolPoW
 - differentiated packet dropping
- Challenges and opportunities for VolPoW
 - adaptive modulation and coding
 - channel-aware scheduling
 - frequency-selective scheduling
 - enhanced antenna techniques
 - multi-hop networks
 - heterogeneous networks

Skype: Adaptive Codec

- ▶ ISAC codec with artificial time-variant packet loss
- Packetization independent of packet loss
- Variable bit rate by increasing packet size, i.e. more audio data

Scenario: VoIP over HSDPA

- □ G.711 codec: 64 kbps 160bytes per 20 ms
- ▶ Performance of different schedulers

Maximum CQI Scheduler

optimizes throughput channel-aware starvation, unfairness

Proportional Fair Scheduler

optimizes throughput considering long-term throughput fairness channel-aware

Round Robin

optimal short-term time fairness channel-unaware

FIFO

First In First Out common buffer channel-unaware

DEDF Scheduler

Dynamic-Earliest-Deadline-First considers buffering time channel-aware optimizes delay

CH-EDD Scheduler

Channel-Dependent-Earliest-Due-Date considers buffering time channel-aware drops packet after deadline

VoIP over HSDPA

packet dropping probability

User	MAX	PF	DEDF	CH-EDD
13	1.81 %	< 1 %	< 1 %	2.09 %
16	6.75 %	1.90 %	< 1 %	3.99 %
20	14.06 %	7.48 %	< 1 %	7.76 %

Dirk Staehle

Conclusion

- Situation today
 - circuit-switched voice is optimized for QoS and spectral efficiency
 - little/no support for VoIP in cellular networks
 - VolPoW is VolP over WLAN
- Drivers for VolPoW in cellular networks are
 - all-IP infrastructure, IMS
 - vertical handover
 - possibilities of packet-switched radio transmission
- VoIP over Wireless will replace circuit-switched voice in the future
- Future challenges and opportunities
 - enhanced packet-switched radio transmission
 - multi-hop
 - development of VoIP optimized codecs
 - charging

