

VoWLAN Capacity depends on Frame Rates

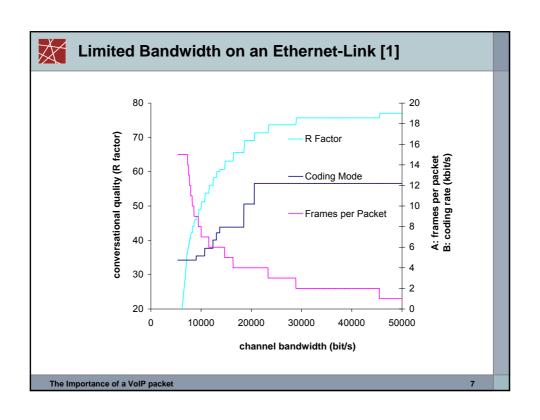
- □ IEEE 802.11b has a high packet switching overhead.
- VoIP transmission includes
 - RTP, UDP, IP headers
 - IEEE 802.11 MAC headers
 - IEEE 802.11 Physical preamble
 - Collisions and Contentions
- □ Capacity of VoWLAN depends on the number of packets per seconds
 - As various performance simulations and experiments have shown.
- Question: How to reduce the number of packets per second?

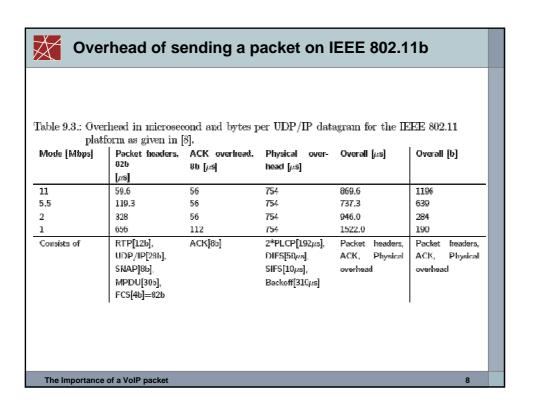
The Importance of a VoIP packet

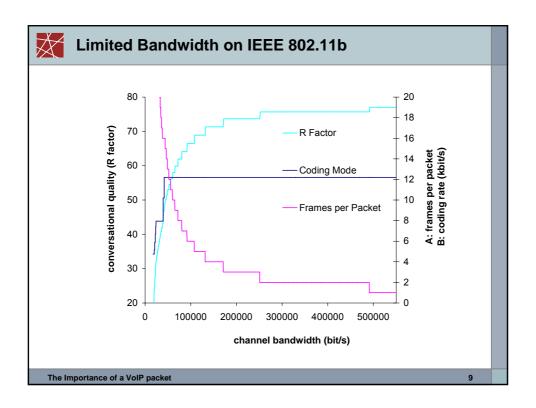
Background: Adaptive Coding Rate in UMTS

- □ Adaptive Multi-Rate Coding (AMR) supports
 - Eight different coding modes
 - Ranging from 4.75 to 12.2 kbps.
- Depending on the quality of the channel
 - The ideal coding mode is selected
- If the capacity is plenty
 - AMR-WB can be used (twice the frequency bandwidth and coding rates)
- □ If the capacity is low
 - Half-rate modes are used.

The Importance of a VoIP packet


5




How to Measure VolP Service Quality?

- Measuring Networking QoS
 - E.g. loss rate and mean delay
 - Easy but inaccurate
- □ In the end, the service quality is important
 - Human based listening tests are extensive
- □ ITU P.862 (PESQ algorithm) measures speech quality
 - Compares original sample with the transmitted version
 - Calculates Mean Option Score (MOS) (1=bad, 5=excellent)
- □ ITU G.107 (E-Model) predicts quality of tel.-system
 - $\, \blacksquare \,$ Considers echo, loudness, coding, packet loss rate, delay, \dots
 - Result: R Factor (0=bad, 70=toll quality, 100=excellent)

The Importance of a VoIP packet

Theoretical Results

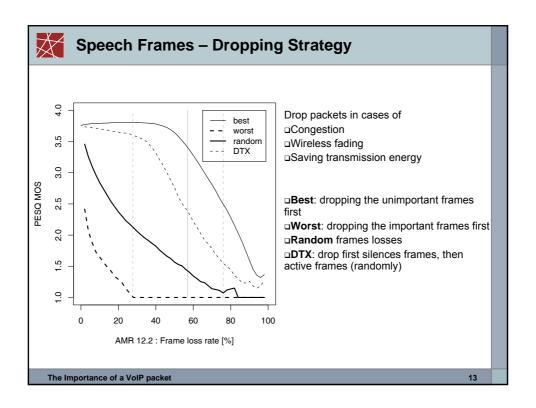
- If the wireless link is congested, a Wi-Fi VoIP phone shall adapt
 - Packet rate
 - Not coding rate!
 - (only if already a low-rate coding is already applied.)
- □ Why?
 - Because every VoIP packet has a large overhead
 - due to packet headers (e.g. IEEE, LLC, IP, UDP, RTP)
 - due to MAC overhead (e.g. contention and collisions)

The Importance of a VoIP packet

Problem: How to reduce the packet rate of speech coding?

- 1. Packetization:
 - Change the number of speech frames per packet.
 - Is supported by current standards (RTP)
 - Drawback: Increase the packetization delay.
- 2. Change the codec:
 - Currently, each codecs sends out frame at fixed rates (e.g. 10, 20, 30ms)
 - Why? Because of circuit switched transmission channel (ISDN, GSM, UMTS, ...)
 - Current speech codecs have been design with CS transmission in mind.
 - No "real" Internet codec available
 - Even iLBC and other GlobalIPSound's codec have fixed frame rates.
 - We need to optimize the frame rate in addition to
 - · Coding rate, complexity, delay, and speech quality!
- 3. Suppress not relevant frames and do not transmit them...

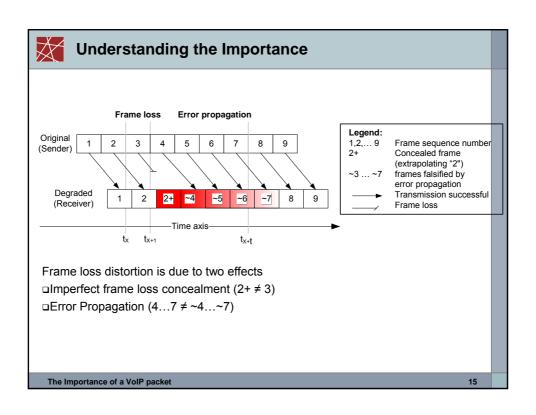
The Importance of a VoIP packet

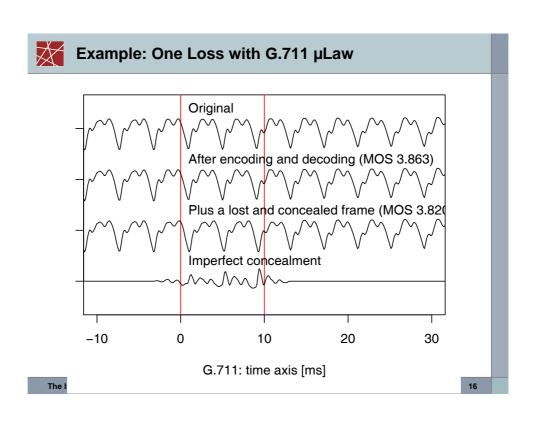

1.

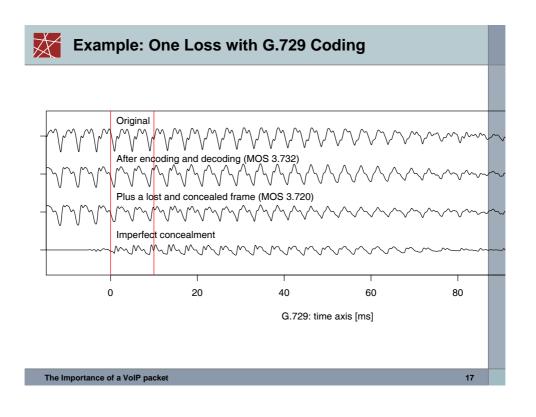
Dropping frames.

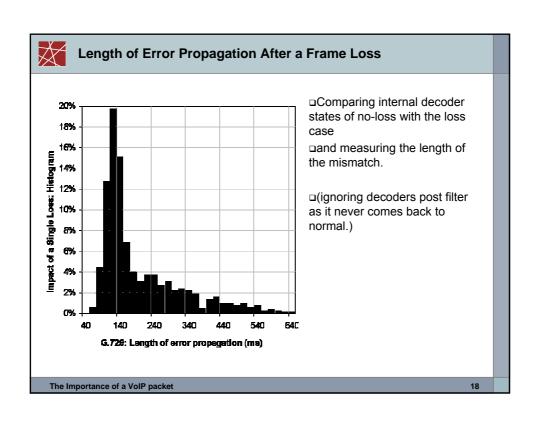
- □ Discontinuous Transmission (DTX)
 - · Speech frames during silence are less important
 - Lower frame rate during silence
- But even frames during voice active differ.
 - Some frame are more important than others
- We have had developed an approach on how to measure the
 - Frame importances alias
 - The impact of a frame's loss on speech quality

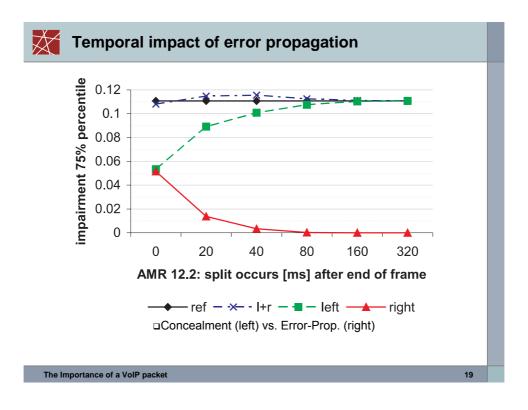
The Importance of a VoIP packet

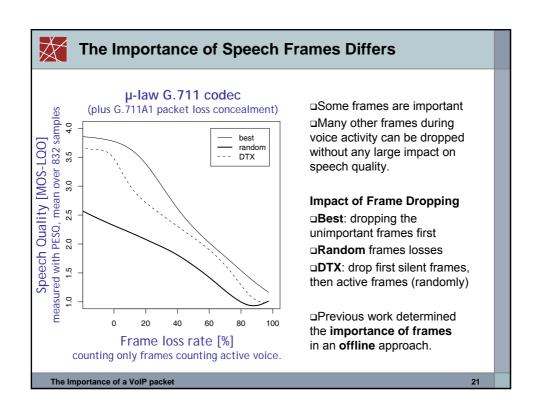


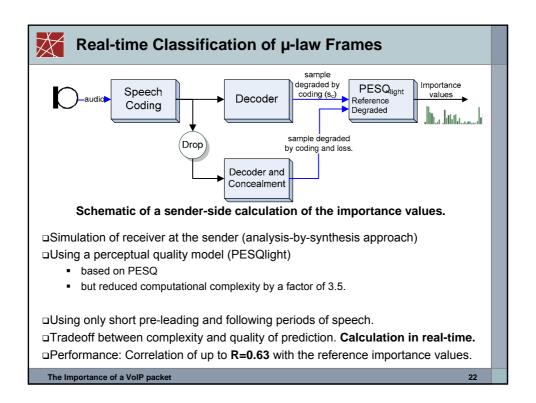



Problem Statement


- Frame importance be can measured offline (previously presented approach).
- Offline not useful for interactive telephony!
- □ Can we predict the importance at real-time?
- □ How well perform other frame classification algorithms (benchmarking related work)?
- □ Can be we provide a better solution?


The Importance of a VoIP packet




Analysis of Prediction of Packet Importance

- □ Silence detection of G.729 and AMR encoder
- □ Voicing decision of G.729 and AMR decoder
- □ De Martin's Packet Marking: re-implemented
- □ Sanneck SPB DiffMark: Software available
- □ Analysis:

Correlate importance of a packet as measured with PESQ with the packet loss prediction algorithms

The Importance of a VoIP packet

PESQlight (tha	nks to Ti	ill Wimmer)		
□Work in real-time on a not	ebook.			
Similar to offline approach I	out			
□Uses one MOS calculation	n instead of t	two		
□Uses 250ms in front and 0				
□Uses complexity reduced	version of $P_{\mathbb{T}^{abi}}$	ESQ le 7.4.: Functionality removed the origin	al from PESQ algorit	hm.
(WOLK OF THE STUDE IT THE VVII	III Pariction	Description	Function	File
□Further optimization possib	ble Time alignment	The time alignment can be removed,	input_filter,	pesquis
ar artifer optimization pood	DIO	because between original and disturbed	ealc_VAD,	
		signal no variable delays are introduced.	erude_align,	
	Voice Activity	The 35-in Assistan Describes (354 D)	utterance_locate	
	Detection	The Voice Activity Detection (VAD) occurs naturally already before calculation of the		
	Detection	importance values. For example, a VAD is		
		included in the encoder, the adaptive sain		
		control or the echo compensation.		
	Power reference	The values are not required for the real	pow_of	pesqu
		PESQ functionality.	•	
	Utterances	The subdivision into several utterances is	short_term_fft	pesqu
		not necessary, because only speech		
		segments not larger than one second are		
		considered.		
	Frequency	No constant frequency distortion is to be	totaLaudible,	
	responses	expected because of the given coder.	time_avg_audible_of,	
	compensation Constant loud-	??	freq_resp_compensation fix_power_level	bestin
	tioss			Fraga
The Importance of a VoIP packet	Skip silent sam-	YY	2	3 _{><<:m}

Final Contest			
Algorithm	Correlation Coefficient (R)		
G.729 Voicing on G.711	0.184		
De Martin G.729 (on frames)	0.195		
De Martin G.729 (only unvoiced frames)	0.469		
SPB-Diffmark	0.104		
Our algorithm (seg. length 0.25s, dropped frame is the next to last frame)	0.600		
Our algorithm (seg. length 0.25s, dropped frame is last frame)	0.318		
iast frame)			
The Importance of a VoIP packet	24		

Next research steps in speech coding:

- □ Develop an online classification schemes for codecs like AMR, AMR-WB, AMR-WB+
- Develop codecs that scale with bit rate to perfect quality to utilize broad band transmissions
 - Push standardization?
- Develop codecs with source and flow adaptive bit- and frame rates.
- Develop transport protocols for next generation VoIP codings.

Benefits of low-frame rate codings:

- Increase capacity if bandwidth is limited
- Decrease mean energy consumption if powered by a battery

The Importance of a VoIP packet

25

The End

□ Thank you for your attention!

The Importance of a VoIP packet