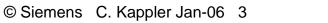
Mobility support for control signaling with the IETF NSIS protocol suite

Cornelia Kappler, Siemens AG / ITG Workshop Bremen, January 2006


Outline

- Introduction
- NSIS
 - NSIS Basics
 - NSIS lower layer (GIST)
 - NSIS Signaling Applications
 - NSIS Extension: off-path
- NSIS & Mobility
 - Problems for NSIS caused by mobility
 - General NSIS approach to mobility
 - QoS NSLP & MIP, HMIP, FMIP
 - QoS NSLP & Mobility in B3G
- Conclusion

Introduction

- IP networks originally designed to just robustly deliver data
- Telecommunication networks and Internet converge
 - Cf. Beyond 3G
- Telecommunication networks offer sophisticated operator-centric control
- Flexible IP-based control protocols necessary
 - QoS
 - Mobility
 - Security
 - Charging
 - Monitoring
 - ...

Introduction – NSIS history

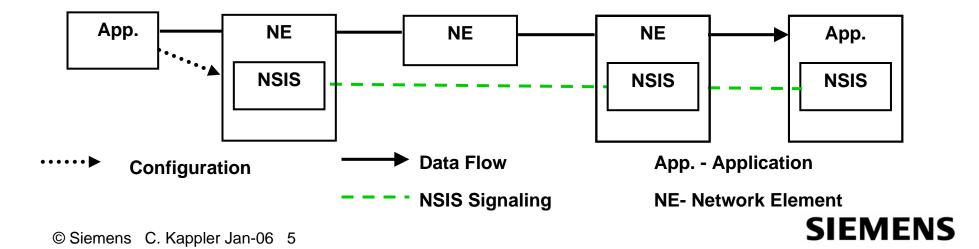
- NSIS Working Group of the IETF chartered November 2001

• NSIS: "Next Steps in Signaling"

– NSIS Charter

- develop general-purpose, extensible signaling protocol suite for control of network nodes
 - Broadened from original goal (QoS signaling beyond RSVP)

NSIS Timeline


- NSIS Requirements (RFC 3726) April 2004
- NSIS Framework (RFC 4080) June 2005
- First protocol specification (GIST) about to go into IESG review
- Next protocol specifications (QoS NSLP, NATFW NSLP) expected to go into Working Group Last Call in spring

First set of protocols currently being finalized

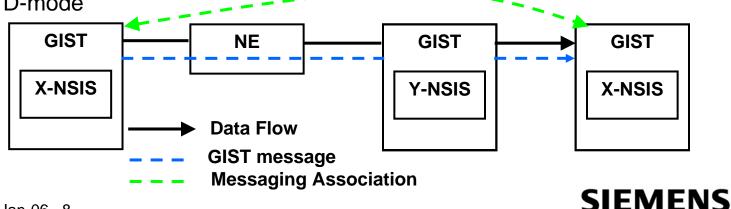
NSIS Basics

- What is 'Control Signaling' in NSIS?
 - Manipulation of flow-related control state held in network elements
 - setting up, modifying, monitoring and tearing down state
 - NSIS currently only covers 'path-coupled signaling'
 - Signaling entities must be on the flow path
 - Not all routers on the data path need to take part in the signaling
 - Flow end-points may or may not be initiator / receiver of the signaling messages
 - Proxy operation build-in
 - Excludes network management, routing, e2e control (this would be SIP)

NSIS Basics

- NSIS protocol suite has two layers
 - Lower layer: "NSIS Transport Layer Protocol" (NTLP)
 - Provides functionality common to all control signaling applications
 - Establishment of secure signaling overlay
 - Upper layer: "NSIS Signaling Layer Protocols" (NSLPs)
 - Signaling applications, only contain signaling semantics
 - E.g. QoS signaling, NAT/Firewall configuration, (meter configuration) etc.
- New signaling applications (NSLPs) can easily be defined
 - Modular and extensible design
- All NSIS state is soft-state

QoS NSLP	NAT/FW NSLP	Metering NSLP	Other NSLPs	
NTLP routing of signaling messages, reliability, compression, cryptographic protection				SISN
L4 / IP				


GIST - Overview

- The current protocol specification for NTLP is GIST
- A NSIS-capable node implements GIST and typically one or more NSLPs
- Upon receiving a message from a local NSLP...
 - ...GIST sends it to the next NSIS node on the flow path featuring the same NSLP
 - ... where it is received by the local GIST, and delivered to NSLP
 - The message is now terminated GIST signaling only hop-by-hop

GIST - Overview

- How does GIST know the next relevant NSIS hop?
 - First NSLP message for a new session
 - *"Datagram mode" (D-mode):* send packet to flow receiver with router-alert option / UDP
 - Next GIST node receives message and checks whether it locally has the right NSLP
 - If yes, it (usually) installs a "Messaging Association" with previous GIST node
 - Including Security Association building on existing protocols (IPSec, TLS,..)
 - Including "backwards routing state"
 - If it does not, it just sends the message on
 - Subsequent NSLP messages for a session
 - If Messaging Association exists: "Connection Mode" (C-Mode) over TCP
 - GIST directly addresses message to next GIST peer
 - Otherwise: D-mode

NSIS Signaling Applications: QoS NSLP

- QoS NSLP is a QoS signaling protocol
- Reserves resources on a flow path
- Can be considered to be like RSVP, but more flexible
 - Can provide sender/receiver/bidirectional reservation
 - No multicast support
 - Decouples resource description more fully from protocol
 - Can be used for multiple "QoS Models"
 - IntServ, DiffServ, 3GPP like description of QoS,...
 - Uses GIST for routing/transport
 - Mobility handling (as well as rerouting, etc)
 - Flexible location of sender / receiver (not just originator of flow)

NSIS Signaling Applications: NATFW NSLP

- NATFW NSLP is a protocol to configure Firewalls and NATs
- NAT /FWs can be obstacles to applications
 - => Desireable to enable the user to communiate with NAT / FWs
 - signal to open a "pinhole" in a firewall for his flow
 - User can inquire NAT about his address bindings
- Related to STUN / MIDCOM work but complementary

NSIS Signaling Applications: Metering NSLP

•Metering NSLP is a protocol for configuration of Metering Entities

• Monitoring entities, accounting and charging entities

Motivation

• In future networks central configuration of metering entities unfeasible

•Metering NSLP follows data path and discovers and configures appropriate network nodes

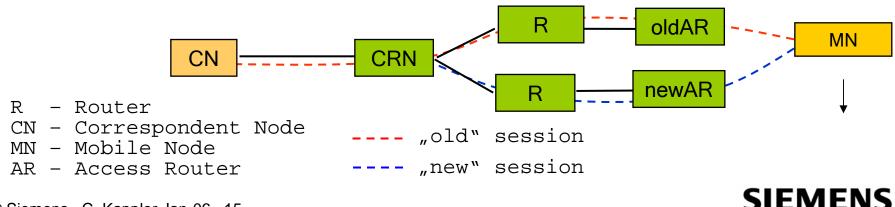
- Metering entities usually are located on the data path
- •Export of metering data by other means
- IPFIX, DIAMETER,....
- •Configuration information distributed
- Select network elements doing the metering
- Description of Triggers to start / stop accounting
- Distribution of identifiers for Collector / flows / user

NSIS Extension: Off-path NSIS

- Some NSIS applications could benefit from including off-path entities
 - Bandwidth brokers in QoS NSLP,
 - Interworking with / Integration into 3GPP, ITU-T
 - Migrating from other QoS signaling solutions
- IETF is not fond of centralized control
 - NSIS is restricted to on-path signaling currently
- ID "A Problem Statement for Path-Decoupled Signalling in NSIS"
 - Describes scenarios and possible NSIS modifications
 - NSIS feature: do on-path and off-path signaling with one protocol
 - Only minor NSIS modifications necessary, e.g.
 - GIST QUERY is redirected to off-path node
 - Messaging Association is built with off-path node
 - http://www.ietf.org/internet-drafts/draft-hancock-nsis-pds-problem-01.txt
 - Some likelihood to become working group draft

Outline

- Introduction
- NSIS
 - NSIS Basics
 - NSIS lower layer (GIST)
 - NSIS Signaling Applications
 - NSIS Extension: off-path
- NSIS & Mobility
 - Problems for NSIS caused by mobility
 - General NSIS approach to mobility
 - QoS NSLP & MIP, HMIP, FMIP
 - QoS NSLP & Mobility in B3G
- Conclusion


Problems for control signaling caused by mobility

- Due to handover, a part of the packet path is rerouted
 - Between CRN and MN
- Due to handover, the IP address of the MN may change
- On the new part of the path, new state must be installed
- On the old part of the path, the old state must be torn down
- On the unchanged part of the path between CN and CRN, the state must be maintained
 - NSIS signaling must recognize CRN
 - At CRN join new and old branch of the session
 - Recognize they are really "the same" session
 - Identification of session must not be based on IP address

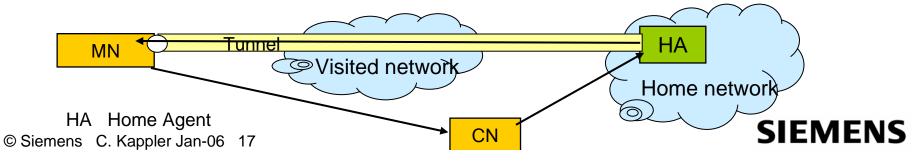
General NSIS approach to mobility

- NSLP sessions are identified by a randomly generated Session ID
 - Doesn't change due to mobility event
 - Allows joining of reservations on old and new path
- Packets belonging to a particular session are identified by a Flow ID (filter)
 - E.g. sender / receiver IP address, ports etc
 - Must be updated on entire path when IP address changes
- NSLPs may introduce additional mobility support
 - Mobility problems are thought to be NSLP specific

Overview of QoS NSLP approach to mobility cont'

- Assumptions on this page
 - MN receives new IP address due to handover
 - CN learns new IP address (e.g. Binding Update)
 - Direct routing between MN and CN
- Note: Reserve and Refresh are identical messages in QoS NSLP

Update of QoS NSLP reservation MN -> CN


- When MN arrives at new Access Router, it issues a RESERVE
 - With old session ID and new flow ID (because IP address changed)
 - RESERVE causes "new" reservation on new path between MN and CRN
- When RESERVE arrives at CRN, CRN recognizes it as a known session arriving at a new interface
 - CRN sends RESERVE on, towards CN, in order to refresh reservation and update Flow ID
- "old" reservation between MN and CRN times out or can be town down actively by CRN
 - Possible authorization problem: is it important that a reservation can be torn down only by the node that originally initiated it?
- Update of QoS NSLP reservation CN -> MN
 - CN sends RESERVE towards MN's new IP address
 - Between CN and CRN, the existing reservation is refreshed and the Flow ID updated
 - At CRN the RESERVE leaves the "old path" and automatically causes a new reservation
 - GIST determines it must use datagram mode because flow ID changed
 - CRN must have intelligence to tear down old reservation
- NOTE: upstream and downstream CRN are not necessarily the same node

© Ster Bacause afpasymmetric routing

QoS NSLP and Mobile IPv6

- Mobile IPv6 summary
 - MN has both home address and Care of Address (CoA)
 - MN registers CoA with Home Agent (Binding Update)
 - 3 possible routing scenarios
 - 1. Triangle routing (see Figure)
 - CN -> MN
 - CN addresses packets to home address
 - HA tunnels them to CoA
 -> for tunnel: source address HA, destination address CoA
 - Tunnel between HA and MN
 - MN -> CN
 - MN sends packets directly to CN (CoA as source address)
 - 2. Reverse Tunnelling
 - CN -> MN as above
 - MN -> CN
 - MN tunnels packets via HA in order to hide its location -> for tunnel: source address CoA, destination address HA
 - 3. Route Optimization
 - MN sends Binding Update to CN, too
 - All packets are sent directly between MN and CN

QoS NSLP and Mobile IPv6 cont'

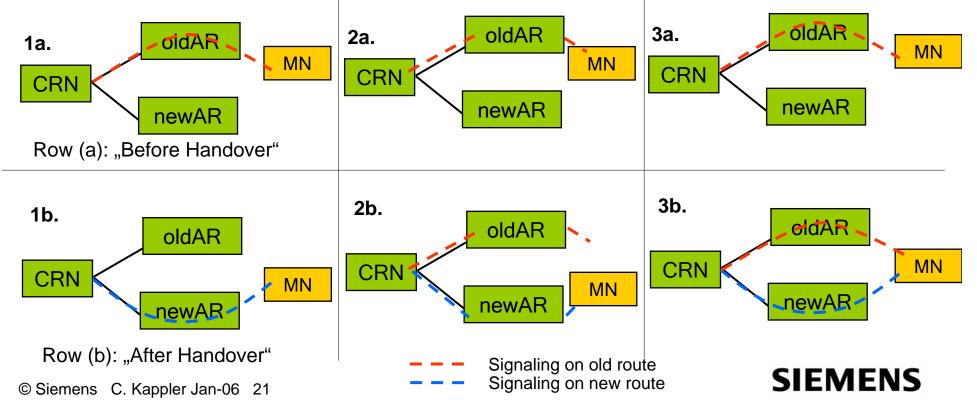
- QoS NSLP signaling with MIPv6
 - 1. Triangle routing (see Figure)
 - CN -> MN
 - CN sends RESERVE to home address
 - -> results in reservation between CN and HA
 - -> RESERVE tunnelled between HA and MN (i.e. has no effect)
 - HA, upon receiving RESERVE, initiates independent RESERVE for the tunnel
 - When CoA changes due to handover, HA updates reservation for tunnel
 - MN -> CN
 - MN sends RESERVE directly to CN
 - When CoA changes due to handover, MN initiates new RESERVE (see above)
 - 2. Reverse Tunnelling
 - CN -> MN as above
 - MN -> CN
 - MN sets up reservation for tunnel to HA
 - Additional RESERVE is tunnelled to HA and sets up reservation between HA and CN
 - 3. Route Optimization
 - Both MN and CN set up normal reservations
 - When CoA changes due to handover
 - -> MN immediately updates reservation
 - -> CN updates reservation after receiving Binding Update

QoS NSLP & HMIP, FMIP

- HMIP and FMIP just introduce additional tunnels
 - must be set-up and maintained independently

MAP Mobility Anchor Point oldAR MN MAP HA before handover newAR after handover _ _ _ _ _ _ _ _ _ oldAR FMIPv6: MN CRN HA newAR packet path © Siemens C. Kappler Jan-06 19

HMIPv6:


QoS NSLP & Mobility in B3G I

- NSIS signaling should be issued by a proxy in the network (e.g. AR) rather than by the MN
 - NSIS allows proxy operation
 - Collaboration of NSIS with "MIP" in such a scenario depends on details of mobility handling
 - Presumably MN doesn't issue MIP messages in this scenario either
- make-before-break desireable
 - i.e. reserve on the new path before tearing down reservation on the old path
 - QoS NSLP has a "REPLACE" flag
 - When not set, the reservation on the old section of the path will not be torn down immediately
 - This way, a "bifurcating" reservation can be maintained
 - Who initiates tear-down when?

QoS NSLP & Mobility in B3G II

- Fast teardown of reservations, particularly on the air interface
 - 1. In a "standard IP situation" with MN initiating the signaling and "break-before-make": impossible
 - 2. When AR proxies the NSIS signaling for the MN, oldAR can tear down reservation on air interface as soon as it notices MN moved away
 - Cannot tear down yet towards CRN, because CRN is not determined yet (except in well defined environments)
 - 3. In "make-before-break", MN can initiate tear-down when appropriate

Conclusion

• NSIS is a general-purpose, extensible signaling protocol suite for control of network nodes

SIFMFNS

- NSIS protocol suite has two layers
 - Lower layer: "NSIS Transport Layer Protocol" (NTLP)
 - Provides functionality common to all control signaling applications
 - Establishment of secure signaling overlay
 - Upper layer: "NSIS Signaling Layer Protocols" (NSLPs)
 - Signaling applications, only contain signaling semantics
- Current NSLPs
 - QoS NSLP, NATFW NSLP, (Metering NSLP not yet Working Group Item)
- NSIS design "mobility aware"
 - QoS NSLP can work with Mobile IP and its optimizations (HMIP, FMIP) "as-is"
 - No changes to the protocol necessary
 - Need extra logic in MN and HA
 - Must update reservation when IP address of MN changes
 - Need extra logic in CRN
 - If it is supposed to tear down reservation on old portion on the path
- Mobility support in proxy operation requires further thought © Siemens C. Kappler Jan-06 22