ITG-Fachausschuss 5.2
Kommunikationsnetze und Systeme
Workshop "Zukunft der Netze"
4. November 2005, Mittweida

Potentials and Challenges of Ad hoc and Mesh Networks

Nico Bayer
Nico.Bayer@iem.fh-friedberg.de

Bangnan Xu
Bangnan.Xu@t-systems.com

ITG FG 5.2.4: Mobilität in IP-basierten Netzen

Potentials and Challenges of Ad hoc and Mesh Networks Content

Wireless Multihop Networks

What is it?

- Multipoint-to-Multipoint communication
 - Communication among nodes (direct or multihop)
- Every node in the multihop network has router functionalities
- Nodes are connected via wireless links
 - No wired connections
- Self-organizing distributed intelligence
 - No centralized managing
 - Routing- und connection establishment are decided by every node itself
- Some of the nodes are connected to the Internet
 - Coverage of the Internet access is increased by other multihop nodes
- Multihop networks can be set up with various wireless technologies:
 - E.g.: Bluetooth, WLAN, WiMAX

Wireless Multihop Networks Ad hoc/Mesh

- Mobile Ad hoc Networks (MANETs) Client mesh networks
 - Spontaneous formed network that consists of mobile devices (PDA,Laptop)
 - High mobility
 - Limited energy
 - Mainly for local communication
 - Integration with external networks by means of special Gateways
- Wireless Mesh Networks (WMNs) Infrastructure mesh networks
 - Network consists of infrastructure components (e.g.: BS, AP)

 ow mobility

 - Unlimited energy
 - ostly used as mansport network
 - Always corrected to an external network (e.g. Internet)
 - Typically user access and backhaul communication are decoupled
 - E.g. backhaul via 802.11a and user access via 802.11b/g

focus!

Wireless Multihop Networks Benefits of mesh multihop networks

Wiring is a cost intensive factor Wiring is a cost intensive factor
 Wiring each Internet access point is expensive Mesh network can reduce the number of expensive Internet connections Many mesh nodes share few Internet connections Additional mesh nodes can be easy installed
 Redundant paths
Small distances between nodesEnergy efficient, min. interference, spatial reuse
No wiringAutoconfiguration
 Multihop can enhance the coverage of a BS Forwarding packets to the Gateway by intermediate nodes Far users can be covered Multihop can enhance the network performance High performance for far users Poor performance on direct link to the BS Higher performance on short links High performance for nodes without LOS Direct link is poor because of obstacles Routing around obstacles

Application Potentials of Mesh Networks Broadband Wireless Internet Access (BWIA)

- Broadband access (e.g. DSL) is not available everywhere
 - Installing the required infrastructure is prohibitively expensive
- WMNs offer considerable advantages
 - Low Upfront Investments
 - No wiring
 - Customer Coverage
 - LOS to the BS is not required
 - Fast deployment
 - Reliability
 - No single point-of-failure
 - Optimized communication among mesh nodes
 - E.g. for community and neighborhood networking
- Application scenarios, e.g.:
 - Wireless DSL (e.g. WiMAX) to cover undersupplied DSL areas

Application Potentials of Mesh Networks Indoor Networking

- Indoor coverage is difficult
 - Walls, objects, people, etc. interfere the propagation
 - Dead zones without coverage
 - Full coverage is expensive
 - Every AP needs an Ethernet connection to a central hub
- WMNs for indoor networking
 - All devices can share one Internet connection
 - Mesh APs only need power supply
- Application scenarios, e.g.:
 - Building automation
 - Broadband home networking
 - etc.

Application Potentials of Mesh Networks Cellular backhaul

Nico Bayer "Potentials and Challenges of Ad hoc and Mesh Networks" 04/11/2005, Mittweida

Application potentials of Mesh Networks Further examples

- Spontaneous (Emergency/Disaster) Networking
 - Communication infrastructure is destroyed or not existing
 - Spontaneous build WMN can be used for communication of the rescue team
- Security surveillance systems
 - WMNs are a much more viable solution than wired networks to connect all devices
 - Images and videos are the major traffic flow high bandwidth
- Transportation environment
 - Mesh network beside railways to connect trains
 - Backhaul mesh network within the train to interconnect coaches
- Backhaul for Hotspots
- Car-to-Car communication
- Mobile user access

Existing Mesh Solutions BelAir Networks

- Multiple Point-to-Point Mesh with WiFi Access to cover large venues
- Integrated wireless mesh backhaul and wireless access solution
 - User access via 802.11b/g (2.4GHz)
 - Backhaul connections via 802.11a (5GHz) WiMAX in the future
- Enhanced wireless OSPF as routing protocol
- WiFi coverage inside buildings from the outside
- Cellular backhaul

Existing Mesh Solutions

BelAir Networks

Deployment example: T-Mobile Meeting at Sheraton Maui

■ Challenges:

- 6 building complexes, 529 rooms, over 23 acres, including:
 - Fitness Center
 - Salon & Day Spa
 - 6 Restaurants and Bars
 - 6,500 square foot ballroom
 - 140 Yard Fresh Water Lagoon-Style Pool
- Very limited room for deployment on the ocean side
- Limited locations for mounting power access

■ Result:

 Full WiFi coverage of the Sheraton property (with only 13 mesh boxes)

Source: BelAir networks, http://www.belairnetworks.com/

Nico Bayer "Potentials and Challenges of Ad hoc and Mesh Networks" 04/11/2005. Mittweida

Existing Mesh Solutions BelAir Networks Deployment example: Telekom Ottawa

■ Challenge:

- Public WiFi access in downtown Ottawa
- complete hotel coverage from the same mesh
- Result:
 - 20 BelAir mesh boxes to cover the desired area

Nico Bayer "Potentials and Challenges of Ad hoc and Mesh Networks" 04/11/2005, Mittweida

Existing Mesh Solutions Microsoft

- Mesh connectivity layer (MCL) module
- Self-Organizing Neighborhood Wireless Mesh Networks
 - Fast and cost-effective sharing of Internet access via gateways that are distributed in the neighborhood
 - Neighbors can cooperatively deploy services (e.g.: backup technology)
 - Fast and easy dissemination of local information
 - Data must not go through a service provider and the Internet
- Microsoft focus on Software not Hardware
- Goal is to implement the multihop functionality in Microsoft Windows

Existing Mesh Solutions

■ Further proprietary mesh solutions are available from:

- Nokia -- Motorola

- Tropos -NovaRoam

SkyPilot-4G Systeme

FiretideNortel Networks

LocustWorld (Software)

- etc.

- All these solutions rely on different technologies and standards
 - Thus they are all incompatible

Standardization is needed for mass market

Mesh Standardization Activities IEEE

	802.11	802.15	802.16
Task Group	802.11s	802.15.4 (Zigbee) 802.15.5 (WPAN Mesh)	802.16-2004 (802.16a)
Network type	Local Area networks	802.15.4: Sensor networks 802.15.5: Personal area networks	Metropolitan area networks
Focus	Phy & Mac layer	Phy & Mac layer	Phy & Mac layer
Dates	First meeting 06/2004	802.15.4 standardized 11/2003 802.15.5 05/2004	802.16a ratified in 01/2003
Current state	Begin of standardization process: Review of proposals Creation of joint proposal by the end of 2006 Standard is targeted to be approved by 2008	802.15.4: native mesh support 802.15.5: Begin of standardization process: determine the necessary mechanisms (in PHY & MAC) WPANs to enable mesh netw.	Mesh already included in the current (802.16-2004) standard – many limitations and open issues Proposals have been submitted to enhance the 802.16 mesh New Study Group to discuss about Mesh or Relay approach

Mesh Standardization Activities IETF

- A lot of effort has been spend on developing multihop routing protocols
 - E.g.: AODV, DSR, DSDV, etc.
- These protocols are designed for mobile ad hoc networks (MANETs) and thus optimized for:
 - High mobility and dynamic networks
 - Less overhead and energy efficient
 - Low bandwidth
- These protocols need to be optimized for WMNs
 - Many optimization possibilities
- Currently no standardization activity specialized on mesh routing protocols

Research activities and challenges

Multihop Routing

Route selection

- Most of the current protocols only consider hop count as metric
- Further possible metrics: traffic situation, delay, jitter, bandwidth, link quality, error rate, etc.
- Load balancing
- Backup routes
- Routing Security
 - Protect against routing attacks
 - Protect against forwarding attacks

Figure 7. Throuhgput performance of a random topology 802.16 mesh

Source: Hung-Yu Wei, et al. "Interference-Aware IEEE 802.16 WiMax Mesh Networks"

Research activities and challenges (Cont.)

Quality of Service

Resource reservation

- Wireless channel problematic fast changing wireless conditions
- Multihop
- Resource allocation (Scheduling)
 - Fairness
 - Spatial reuse
 - Interference avoidance
 - Actual channel conditions
- Capacity enhancement on PHY layer
 - Directional and smart antennas
 - MIMO systems
 - multi-radio/multi-channel systems

Figure 6. Overall throuhgput of a chain topology 802.16 network

^{*}Source: Jangeun Jun, et al. "The Nominal Capacity of Wireless Mesh

^{**}Source: Hung-Yu Wei, et al. "Interference-Aware IEEE 802.16 WiMax Mesh Networks"

Research activities and challenges (Cont.)

- Attacks are simplified because of wireless medium security should guard against:
 - Malicious users (and freeloaders)
 - Routing attacks
 - Changing of routing tables by misuse of routing messages
 - Forwarding attacks
 - Creation of Wormholes
 - Guard against MAC attacks
 - Congestion of network by malicious users
- No centralized Management
 - Distributed key management
 - Distributed AAA functionalities

Conclusions

- An overview about multihop networks was presented
- Introduction into the State-of-the-Art in mesh networking
 - Applications scenarios
 - Existing solutions and trials
 - Standardization activities
- Research activities and challenges
- Mesh networks have the potential to fit the needs for future communication systems
 - A lot of effort needs to be spend into this technology to solve technical challenges

Contact

