HO Policies for Combined WLAN/UMTS Networks

Sven Wiethölter Telecommunication Networks Group TU Berlin

Telecommunication Networks Group Technische Universität Berlin

Verteilte Systeme

Project Overview

- Project partners
 - Uni Würzburg,
 - Lehrstuhl f
 ür verteilte Systeme (Prof. Tran-Gia),
 - Rastin Pries, Dr. Dirk Staehle,
 - Simulative and analytical performance evaluation of UMTS and WLAN,
 - TU Berlin,
 - Fachgebiet Telekommunikationsnetze (Prof. Wolisz),
 - Sven Wiethölter,
 - Performance evaluation of WLAN in combination with perceived QoS,
- Goal:

Design and investigation of policies for handovers in heterogeneous networks (UMTS/WLAN).

Overview

- Introduction:
 - Motivation
 - Issues for handover policies
 - Evaluation criterion basic idea
- Evaluation criterion for
 - WLAN
 - UMTS
- VHO policy framework
- Summary
- Outlook

Motivation

- Common approaches for handover decision:
 - Based on single threshold, e.g., dependent on
 - RX power level,
 - Number of retransmissions,
 - Loss of connectivity.
- Issue: When should a mobile be served by which technology, if and when to handover? Depends on
 - Characteristics of each technology:
 - Available resources vs. supported degree of mobility,
 - Weaknesses, e.g., overhead due to MAC scheme.

WLAN or UMTS?

- Decision requires knowledge of current situation in WLAN and UMTS
 → evaluation of situation
- Evaluation criterion for each technology must
 - Reflect current situation, and
 - Allow a predictive investigation of networks`behaviors.
- Evaluation functions
 - For Admission Control in each network, as well as
 - For Handover Control, most probably at different place.
- Investigations for evaluation criterion include:
 - For WLAN
 - CSMA/CA-specific behavior:
 - Inter-frame spaces,
 - (Post)backoff,
 - Rate adaptation.
 - For UMTS
 - Limitations due to interferences / maximum transmit power, and
 - Allocation of channelization codes.

Overview

- Introduction:
 - Motivation
 - Issues for handover policies
 - Evaluation criterion basic idea

Load-based evaluation criterion for

- WLAN
- UMTS
- VHO policy framework
- Summary
- Outlook

WLAN – Simulation Scenario

Goals:

- Identification of costs due to low-rate transmissions,
- Derivation of Evaluation criterion.
- Two investigations:
 - Maximum capacity, and
 - Degradation by low-rate users.
- VoIP traffic in 802.11b:
 - Bi-directional CBR streams,
 - ITU-T G711-codec, 64kbps,
 - Various packetizations,
 - Call has lousy quality, if:
 - 5 percent packet loss,
 - Including packets with a one-way delay > 150ms.

Universität Würzburg Verteilte Systeme

WLAN – Capacity at homogeneous rates

WLAN – Mixed Data Rate Environment I

Ξ

WLAN – Mixed Data Rate Environment II

WLAN – Virtual Utilization

 Occupancy time for each transmission, including packet headers, inter-frame spaces, immediate ACK, (post)backoff

Virtual Utilization at AP (i.e., at bottleneck):

TKN Telecommunication Networks Group

Overview

- Introduction:
 - Motivation
 - Issues for handover policies
 - Evaluation criterion basic idea

Load-based evaluation criterion for

- WLAN
- UMTS
- VHO policy framework
- Summary
- Outlook

UMTS – Characteristics

- Our current focus:
 - UMTS FDD
 - Dedicated channels on uplink and downlink
 - QoS is supported for real-time applications
 - Slow rate control/adaptation for best-effort applications
- Future focus:
 - High Speed Downlink Packet Access (HSDPA)
 - Enhanced Uplink with E-DCH
- Characteristics of UMTS
 - Wideband CDMA as multiple access technology
 - Users share the same frequency band at the same time
 - Signals are separated by using different codes
 - Signals interfere with each other
 - Capacity is interference limited

UMTS – Capacity, Admission Control, and QoS

- Uplink Capacity
 - Soft capacity: limited by multiple access interference (MAI)
- Downlink capacity
 - Soft capacity: limited by multiple access interference (available Node B transmit power)
 - Code capacity: limited by available channelization codes per sector/cell
- Admission control (AC)
 - Uplink: threshold on measured noise-rise
 - Downlink: threshold on measured Node B transmit power and occupied channelization codes
- QoS
 - Bearer defines net bit rate and target FER
 - Rate of best-effort services is slowly adapted to interference, Node B transmit power, and code situation

UMTS – Web vs. Voice on the Downlink

- Voice: AMR codec with 12.2 kbps bearer, 50% activity
- Web with adaptive bearer:
 - bit rate: 64kbps, 144kbps, 384 kbps
 - "realistic" activity: 62.5%, 27.7%, 10% with 100kB web page, 20s loading plus viewing time

UMTS – Uplink AC and System Load

AC

- Measures noise rise,
- Translates noise rise to system load, and
- Estimates system load increase by new user.

UMTS – Downlink AC and System Load

AC

- Measures sector transmit power, and
- Estimates sector transmit power increase by new user.

Overview

- Introduction:
 - Motivation
 - Issues for handover policies
 - Evaluation criterion basic idea
- Load-based evaluation criterion for
 - WLAN
 - UMTS
- VHO policy framework
- Summary
- Outlook

VHO Policy Framework I

- Utilization-based criterion each technology
 - Reflects current situation,
 - Will enable a predictive evaluation, and
 - Is a basis for the evaluation function.
- Utilization Margins:
 - Specify an upper level of cell utilization,
 - For perceived quality of different applications,
 - Rescue Margins
 - For non-preventable handovers,
 - Depend on (vertical) neighbor cell and their users.
- Place for HO control
 - Centralized rendezvous entity
 - Signaling delay determines requirements on prediction,
 - But collection of distributed pieces of information among
 - Mobile,
 - RNC, and AP.

VHO Policy Framework II

- Information service:
 - Between UMTS / WLAN networks: status information exchange
 - Enables HO management functionality (e.g., adaptation of rescue margins)
 - Between mobile and WLAN / UMTS networks:
 - Results in information about (vertical) neighbor cells,
 - Enables pre-configuration of devices + higher layer settings,
 - Allows vague prediction of handovers.
- Policies:
 - Costs of each user identified
 - By evaluation criterion including technology-specific weaknesses
 - In Combination with perceived quality metrics.
 - Perform Handover, if
 - In WLAN: low goodput, high virtual utilization, low perceived QoS, high influence on perceived QoS of other users,
 - IN UMTS: system load (up-, downlink, code) in marginal area, low level of perceived QoS for best effort users.

Summary

- Goal: Design of Policies for the decision
 - when a mobile should be served by which technology, and
 - If and when a VHO should be performed.
- Evaluation of situation in each technology:
 - WLAN:
 - VoIP simulations show great impact of
 - Overhead due to MAC specific behavior,
 - Users with lower rates and identify their provoked costs.
 - Motivation for virtual utilization at bottleneck, separation into Up, Downlink and overhead part allows fine-grained Admission / HO control.
 - UMTS:
 - Evaluation criterion for load situation of sector/cell (UMTS FDD) that is applicable in vertical handover decision
- WLAN/UMTS policy framework
 - Utilization criterion for both technologies combined with perceived quality metrics,
 - Utility margins for HO decisions.

Outlook

- WLAN:
 - Investigation of VoIP / web-traffic mixes with respect to virtual utilization and perceived QoS,
 - Short-term predictive investigation of virtual utilization.
- UMTS:
 - Measure for best-effort users' level of perceived quality,
 - Extension to HSDPA and Enhanced Uplink.
- Combined WLAN/UMTS networks:
 - Place of HO decision, including bounds of signaling delay,
 - Simulative investigation of WLAN/UMTS evaluation criteria and handover function,
 - Identification of "best" user to handover.

Thanks for your attention. Questions?

