

Low Cost Positioning: Necessary or Obsolete?

Martin Kuipers

SIEMENS

- 1. Current Situation of Location Based Services
- 2. Low Cost Positioning with CIT+
- 3. Application of CIT+
- 4. Summary

Current Situation of Location Based Services

Introduction - Current Market Situation

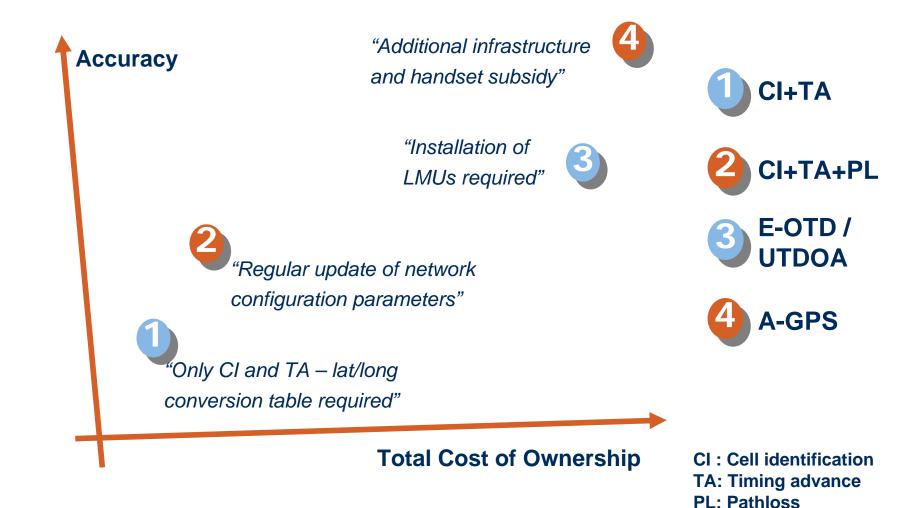
- Location Based Services (LBS) do not play the role expected two years ago
- The only driver for implementing positioning technologies in the networks is the FCC rule in the U.S.
- Commercial LBS still wait for success, although many applications were proposed
- Operators stated, that the current condition is also a technology issue

How Location Based Services look like today

- Typical Location Based Services offered by operators
 - Find nearest points of interests (e.g. cash machines, gas stations, pharmacy, friends)
 - Local area information (e.g. weather, traffic jams, events)
 - Navigation service (e.g. route information, current location)
- Usage via WAP or SMS
- Results are presented mostly as text lists
- Positioning results are often based on Cell Identification with poor accuracy

SIEMENS Martin Kuipers 2005/06/09

Popularity of today's LBS is limited due to ...


- Inaccurate positioning result
- Inadequate presentation of results in text lists
- Bad usability (e.g. SMS, latency, error messages)
- Small graphic displays of legacy handsets

LBS will only break through when ...

... more accurate positioning techniques allowing direct indication on maps are available

Positioning Techniques Available

SIEMENS

Summary of Possible Positioning Technologies

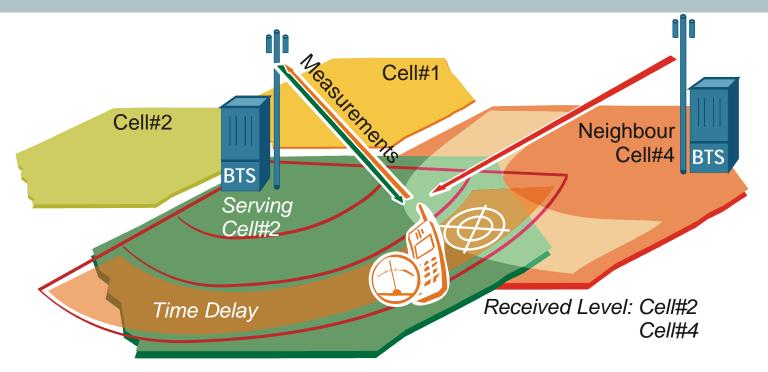
- Simple Cell Identification is too inaccurate
- More accurate positioning methods require installation of additional hardware
- Premium market can be addressed with satellite based positioning, but fallback is necessary for indoor and dense urban environments
- Many applications become possible with mid-range precision positioning techniques (mean error 100-300 m)

A low cost technology addressing the commercial LBS sector with mid-range accuracy and requiring less modifications to handsets could be the key for a push

Low Cost Positioning with CIT+

Reduce significantly the barriers for an introduction of LBS by providing a mobile positioning technique which ...

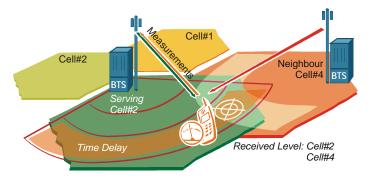
- ... lowers the overall costs
- ... provides acceptable performance for consumer applications
- ... addresses a big market, preferably all subscribers


... therefore has the potential to push the LBS business

Use case – Find a cash machine

SIEMENS Martin Kuipers 2005/06/09

CIT+ Overview



- Use of measurements that are already available:
 - Cell identification
 - Propagation delay or round trip time measurement
 - Reception power or pathloss measurement

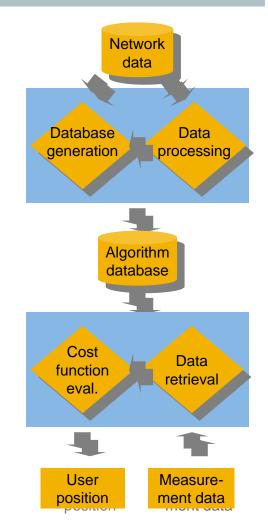
SIEMENS Martin

Principle of CIT+ Positioning

- Measurements are available in many cellular networks including 2G (GSM) and 3G (UTRAN) networks with legacy handsets
- Comparison of measured pathlosses with values from a propagation model
- Simple models like Okamura-Hata are sufficient. No field strength predictions or recordings required.
- Operator needs only to provide network configuration data

Outline of the algorithm

- 1. Determination of the serving cell(s)
- 2. Restriction of the area of interest to the zone corresponding to the reported TA/RTT values
- 3. Assessment of distances to base stations from timing advance and comparison between measured pathloss and pathloss models
- 4. Estimation of user position by optimization of a log-likelihood function ("Cost function")


Data Processing

Network data to build a framework, e.g.:


- Transmitter coordinates, power, and frequency
- Antenna type, height and azimuth

Architecture of the method:

- Off-line preparation of network database:
 - Assignment of coefficients of propagation and round trip time distributions according to transmitter type and environment
 - Estimation of areas served by antennas based on other transmitters data
- On-line calculation of the user positions using network database and measurements

Cost Function Example

Pathloss distance models

SIEMENS

Application of CIT+

Application of CIT+

- Measurements available:
 - Round trip time (Timing Advance) of serving transmitter. Resolution: 550 m
 - Reception power levels resp. pathloss of serving and neighbouring cells
- Comparison with results obtained by simpler method based on cell identification and TA

Comparison of achieved mean accuracy:

Positioning Technique	Dense urban	Urban	Rural
CITA	305 m	305 m	545 m
CIT+	105 m	210 m	415 m

SIEMENS Martin Kuipers 2005/06/09

Summary

Low Cost Positioning with CIT+

- Addresses all subscribers (biggest market volume) by support of legacy handsets
- Performance figures are promising, outplay poor CITA performance and fit to consumer applications
- CIT+ lowers the overall costs: no new handsets and no additional infrastructure necessary
- CIT+ is an ideal fallback solution for A-GPS and can therefore serve as intermediate solution for the indoor problem
- Applicable for GSM and UMTS and other networks and on various platforms

The gap between the poor performing Cell Identification and the high accuracy A-GPS is filled: CIT+

