Improving Ad Hoc Routing for Future Wireless Multihop Networks

Erik Weiß, Bangnan Xu, Sven Hischke

Outline

Motivation

- Ad Hoc Routing
- IEEE 802.11a Coding Schemes
- Link Adaptation
- Prediction Method
- Route Update Mechanisms
- Results & Conclusion

Motivation

Long term goal: Ad Hoc network integration within the fixed infrastructure

- Increasing the quality of the provided service
- Ad hoc networks suffer the most form route breakages and reestablishments
 - Loosing packets, increasing the delay
- That's one of the major problems for TCP

Our goal: Increasing the route continuity and avoiding route breakages

Ad Hoc Routing

Ad Hoc Routing

- Proactive, Reactive, or Hybrid

When a built route breaks:

- Most approaches only react in a proper manner when the link is already broken.
- Leads to high number of lost packets as well as increased route rediscovery and packet delay
- Solution: Link prediction enables route rearrangements / update
 - ERRA, Early Route Rearrangement
 - ERU, Early Route Update

....

IEEE 802.11a 5GHz

IEEE 802.11a has up to Eight Different **Transmission Modes**

Data rate (Mbps)	Modulation	Coding rate (R)	Data Bits per Symbol
6*	BPSK	1/2	24
9	BPSK	3/4	36
12*	QPSK	1/2	48
18	QPSK	3/4	72
24*	16- QAM	1/2	96
36	16- QAM	3/4	144
48	64 - QAM	2/3	192
54	64 - QAM	3/4	216

* Support is mandatory

Communication Networks

IEEE 802.11 5GHz Channel

- Packet Error Rate (PER) versus C/I (Carrier to **Interference Ratio**)
 - Higher PhyModes are capable to deliver higher data rates.
 - Nevertheless, they also need a remarkable higher C/I.
 - Lower Modes are more stable and can be used under difficult conditions.

Link Adaptation **Extended Auto Rate Fallback (ARF)**

- Controlling uses the packet error rate
- Short and long term reaction are realized via different packet buffers
- Bidirected link adaptation, adapting outgoing connection and monitoring incoming connections
- Timer mechanisms to prevent stale information

Scenario

Square: 100x100m 40 Nodes 3 Routes with 100 kbps ■ Gamma: 2,5 Broadcast PhyMode: 16 OAM 1/2 CBR traffic

Channel Monitoring

ComNets **Communication Networks** Erik Weiß

Weighting the LA Switches

Each step is weighted

- Declining order
- Higher weights are more important regarding a possible breakage
- We sum-up all switching steps within a certain time period

ERRA / ERU - Results

- ERRA/ERU does not influence the throughput
- ERRA/ERU can not overcome the system limits
- ERRA/ERU creates slightly shorter routes

Erik Weiß

ERRA / ERU Transmission Delay

Erik Weiß

- Fig. (a): typical AODV Delay **Results**
- Fig. (b), (c): ERRA and ERU are still better
- No Performance enhancement in overload situation

Concluding

- the Delay is minimised, and outperforms Local Repair
- Fig (d): Even in overload ERRA/ERU doesn't worsen the situation

Conclusions and Outlook

- Derived form the LA behavior it is shown, that predicting the future connectivity has been proven, in our opinion.
- We presented two prediction approaches for different link conditions
- We presented the first promising results enhancing Ad Hoc Routing by cross-layer techniques
- Next Steps:
 - Investigating ERRA/ERU with more realistic traffic (TCP)
 - Increasing the prediction basis
 - Behavior in urban environments
 - Using the prediction also for triggering the Handover decision

Thank you for your attention!

Further Questions?

Erik.Weiss@comnets.rwth-aachen.de

Communication Networks

Erik Weiß

