IMST GmbH

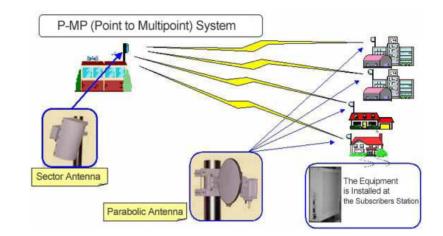
A Multi-hop, Mesh Broadband Fixed Wireless Access Network *

By

Aditi Ramdorai , Shinichi Nomato , Yoji Kishi, Satoshi Konishi, Shinobu Nanba, Takeshi Kitahara, Yujin Noishiki and Akira Idoue

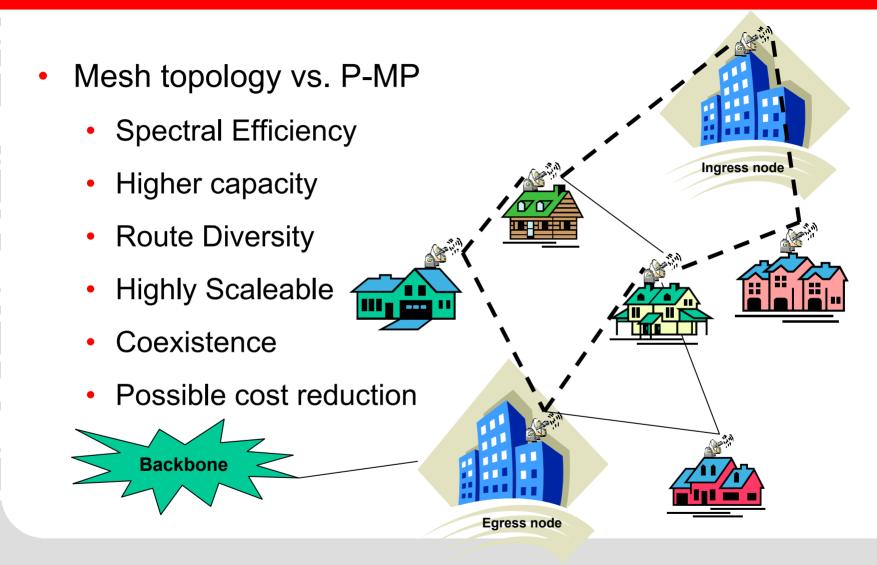
*This work is supported by KDDI R&D Laboratories Inc. in Japan Copyrights belong to KDDI R&D Laboratories Inc , Saitama, Japan.

- Introduction to BFWA
- System Characteristics
- Performance Evaluation
- Conclusion


Introduction

- Broadband Fixed Wireless Access
 - Provide wireless communications using fixed terminals as a "last mile" solution
 - Operating at millimeter wavelength (>17GHz)
 - Conventional Systems are P-P or P-MP

Advantages of BFWA


- High speed
- High capacity
- Large Coverage area
- Easy deployment
- Cost effective

 An alternative to Cable Modem, DSL, Fibre and Broadband Satellite

Mesh networks

- Introduction to BFWA
- System Characteristics
- Performance Evaluation
- Conclusion

Gestaltungstipps für Präsentationsfo Mai 2004

- Multi-hop.
- Mesh topology.
- Operating at 26 GHz
- Achieves up to 420Mbps

 MP-MP using a combination of P-P LOS links using directional pencil beam antenna.

Gestaltungstipps für Präsentationsfo Mai 2004

Adaptive System Characteristics

Low Spectral Efficiency:

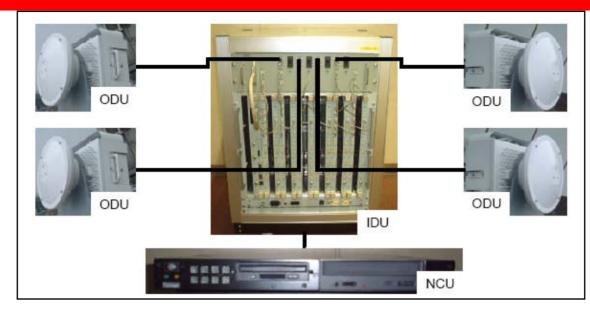
Solved by Mesh topology and the use of

1024 QAM modems that achieve 7bits/s/Hz

Vulnerability to link quality attenuation due to rainfall :

Adaptive modulation (QPSK-1024QAM) + route diversity over mesh network

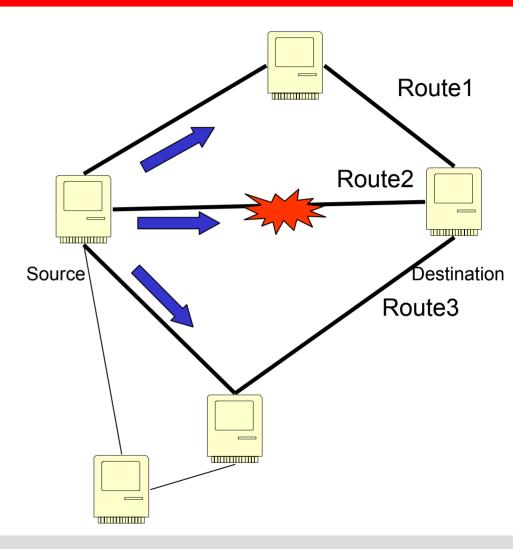
Inflexible towards expansion of network :


Decentralized algorithms and dynamic control of frequency slots, routes etc

Low Adaptability for dynamic variation of traffic:

 Adaptive Traffic Load Balancing+ Dynamic TDD boundary control + Dynamic wireless channel allocation

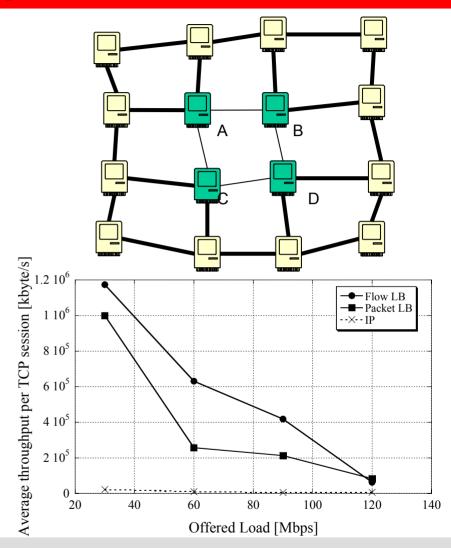
System Characteristics


Unit	Major Function
Network Control Unit (NCU)	MPLS routing, channel allocation to links, optimum route selection, load balancing
Outdoor Unit (ODU)	Tx and Rx using directional antennas
Indoor Unit (IDU)	Adaptive modulation and demodulation, dynamic frequency and TDD boundary selection

*Source: Y.Kishi et.al, "A proposal of Millimeter-Wave multi-hop Mesh Wireless Network Architecture with Adaptive Network Control Features for Broadband Fixed Wireless Access," Proc. of IEEE RACON2001, pp.17-20

Adaptive load balancing

- Causes of link quality degradation could be:
 - Decrease in link quality due to atmospheric conditions
 - Increase of interference/Shadowing
 - Increase of instantaneous traffic along a single route



Source: T.Kitahara et.al, "An Adaptive Load Balancing in Multi-hop Mesh Networks for Broadband Fixed Wireless Access Systems,, Proc. of IEEE RAWCON2004 pp.463-pp.466

Advantages over IP routing

- Route diversity
- Higher throughput
- Lower probability of congestion
- Effective utilization of network resources

Source: T.Kitahara et.al, "An Adaptive Load Balancing in Multi-hop Mesh Networks for Broadband Fixed Wireless Access Systems,, Proc. of IEEE RAWCON2004 pp.463-pp.466

- Introduction to BFWA
- System Characteristics
- Performance Evaluation
- Conclusion

Field Experiment Configuration

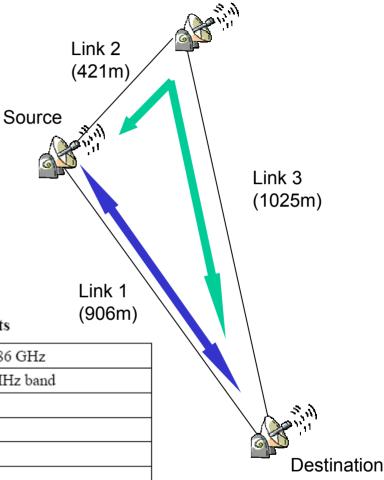
(795) (421) (43) KDDI R&D Labs (1025)(368)(44)(906) (925) (1140)(931) Wireless Link ()Distance [m] I M S Wireless Node

A birds eye view

Performance evaluation

Field Experiment to evaluate Route Diversity:

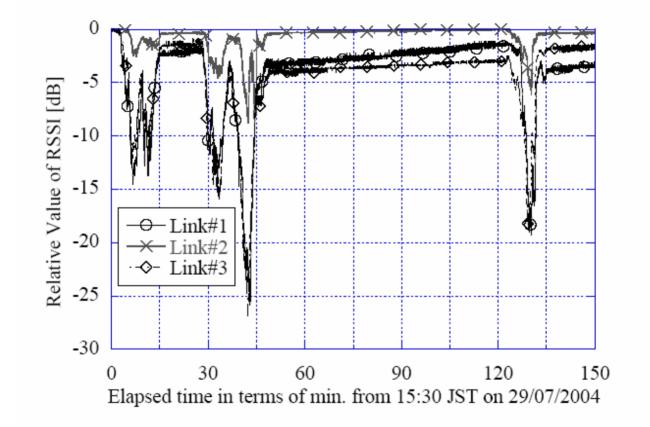
Link #1 – Direct Route Link #2 #3 – Diversity Route


Metrics:

Node availability improvement

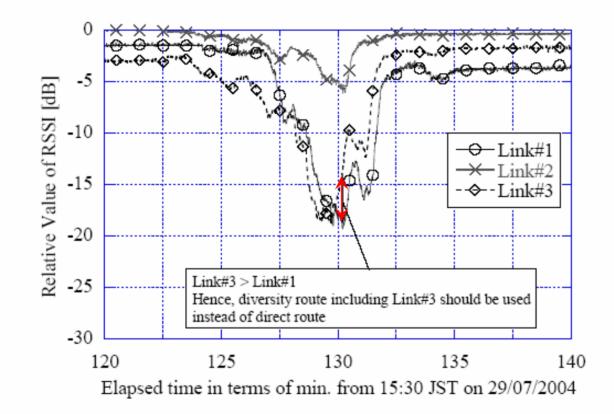
•Diversity Gain

Major specifications of prototype radio units


26.80 – 26.86 GHz
7 over 60 MHz band
8.5 MHz
TDD
50 mW
35 dBi

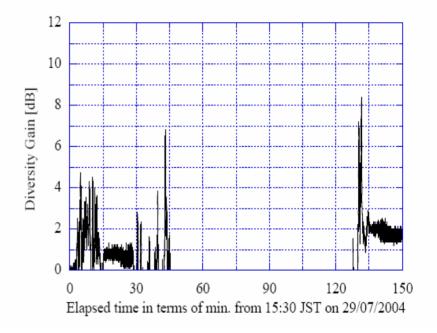
M

Source: Recommendation ITU-R F.1704 - Characteristics of multipoint-to-multipoint fixed wireless systems with mesh network topology operating in frequency bands above about 17 GHz


Performance Results (on one stormy day...)

Source: Recommendation ITU-R F.1704 - Characteristics of multipoint-to-multipoint fixed wireless systems with mesh network topology operating in frequency bands above about 17 GHz

Performance results


Source: Recommendation ITU-R F.1704 - Characteristics of multipoint-to-multipoint fixed wireless systems with mesh network topology operating in frequency bands above about 17 GHz

Gestaltungstipps für Präsentationsfolien Mai 2004

Performance results

- Results:
 - Max. achieved diversity gain more than 8dB
 - At least 1dB gain achieved for 20% of the measurement period
 - At least 3dB gain obtained for 2.4% of measurement period

Source: Recommendation ITU-R F.1704 - Characteristics of multipoint-to-multipoint fixed wireless systems with mesh network topology operating in frequency bands above about 17 GHz

- Introduction to BFWA
- System Characteristics
- Performance Evaluation
- Conclusion

Conclusion

- Mesh networks:
 - Route diversity
 - Adaptive techniques
 - Good choice for BFWA!!
- Field experiments show thumbs up.

Thank You for your attention!!

Contact Information: Email: aditi@imst.de Phone: +49-2842-981-464

