

Sensor Networks for (Building)Automation

Energy Efficiency

Mario Neugebauer TU Dresden, SAP AG Klaus Kabitzsch TU Dresden

- Introduction of Chair for Technical Information Systems
- Application Scenario
 - General requirements
 - Sensor data
 - Deployment difficulties
- Approach description
 - General approach
 - Two-step controller
- Evaluation
 - Beacon order over time
 - Energy over time
 - Relative delay over parameterization

Chair for Technical Information Systems Prof. Kabitzsch

- Fieldbus Networks
 - Building Automation
 - Performance Analysis
 - Network Design Principles
- Wireless Sensor Networks
 - Energy Efficiency
 - Applications for Building Automation
- Test and Diagnosis
 - AutoSPy (Diagnosis for SPS)
 - EXTRAKT (Event Based Diagnosis)
- Cooperation with SAP Research Lab Dresden
 - Smart Items Research Program

Building Automation

- Monitoring
 - Temperature
 - Humidity
 - Outside Wind
 - Air Pressure
 - Precipitation
 - Sky covering
- Multiple Hops possible
 - Lower transmission range
 - Save additional base station
- Non-Realtime and Soft-Realtime
- Market Maturity of IEEE 802.15.4

Analysis of some typical weather data:➢ Several slow changing processes

	E[f]	Unit
Temperature	1.85 · 10 ⁻⁴	°C
Rel. Humidity	8.45 · 10 ⁻⁶	
Wind Speed	2.9 · 10 ⁻⁴	m/s
Air Pressure	9.0 · 10 ⁻⁵	hpa
Precipitation	1.36 · 10 ⁻⁵	mm/h
Sky Covering	1.67 · 10 ⁻⁵	

Analysis of some typical weather data:

- Exponentially distributed gradient
- Exponentially distributed inter-arrival time (sendOnDelta)

Questions for deployment of sensors:

- How to adjust the duty cycle?
 - IEEE adjustment of beacon order for unknown process

Questions for deployment of sensors:

- How to adjust the duty cycle?
 - IEEE adjustment of beacon order for unknown process
- Trade off between energy consumption and transmission delay?

Questions for deployment of sensors:

- How to adjust the duty cycle?
 - IEEE adjustment of beacon order for unknown process
- Trade off between energy consumption and transmission delay?
- How to make algorithm lightweight?
 - Limited computation power, memory and energy in sensor node

• Adaptation of beacon order according to traffic

- Coordinator:
 - Monitoring of traffic
 - Select measurements
 - Evaluate measurements
 - Compute beacon order change
 - Apply beacon order change

In detail:

- Monitoring
 - Count packtes arriving from subordinated nodes
 - Record counted packets over period (n beacon intervals)
- Computation of beacon order change
 - Determine number of messages n from most active node
 - Apply two-step controller
- Apply new beacon order with broadcast of next beacon packet

• Adaptation behaviour over time

Beacon Order

Average beacon order with different two-step settings

- Average beacon order impacts in packet delay
- but different impact according to arrival rate
 - i. e. 1s delay compared to
 - $\lambda_1 = 0.01$ messages/s
 - $\lambda_2 = 0.1$ messages/s
 - $\lambda_3 = 1$ message/s
- > Measure the maximal delay related to arrival rate: $\delta = BI/\lambda^{-1}$

 $\delta = BI/\lambda^{-1}$ vs. b_1 Same parameterization, different arrival rate > Similar delays with regard to arrival rate

- Introduced beacon order adaptation algorithm
- Based on IEEE 802.15.4
- Change of beacon order depending on traffic observed
- No traffic knowledge required
- Beacon order depends on parameterization
 - Impacts energy consumption
 - Impacts absolute delay
 - Leads to similar delay related to arrival rate
- Applicable for a variety of monitoring tasks
- Not suited for certain applications (i. e. light switch) with real-time requirements
- Further examinations (i. e. changing arrival rate)