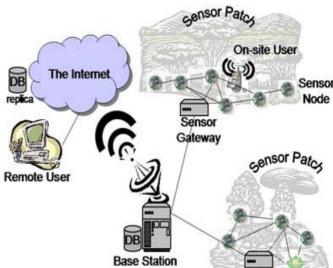
Design Space and Applications of Sensor Networks

Kay Römer ETH Zürich Switzerland

roemer@inf.ethz.ch

What is a Sensor Network?

- De-facto definition by early US-based research projects (Smart Dust, NEST, ...)
 - Deployment: random
 - Mobility: static nodes
 - Size/resources/cost: tiny/constrained/cheap
 - Heterogeneity: identical nodes
 - Infrastructure: none, ad hoc
 - Connectivity: connected network
 - Coverage: dense
 - Size: thousands of nodes
 - Lifetime: years


... and Reality?

- Is this definition matched by concrete existing applications?
- Why is this important?
 - Identify opportunities for future research
 - Generic hardware and software for a wide range of applications
 - Collaborative research
 - Background: ESF workshop in April 2004
- This talk
 - Examines concrete applications
 - Explores the design space of sensor networks
 - Discuss implications

Applications

Bird Observation

- Nesting behavior of birds
 - Occupancy of nesting burrows
 - Nodes in nesting burrows and on the ground
- Features
 - Deployment: manual
 - Heterogeneity: wheather, burrow, gateways
 - Topology: star of clusters

ZebraNet

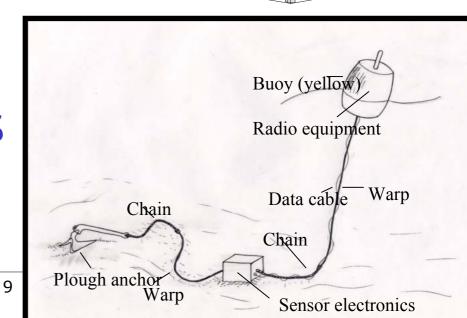
- Bahaviour of wild animals
 - Activity patterns, grouping behavior
 - Nodes worn by animals
 - Mobile base station
- Features
 - Mobility: mobile
 - Connectivity: sporadic
 - Infrastructure: GPS, mobile base station

Cattle Herding

- Virtual fence lines
 - Improved usage of feedlots
 - Reduced overhead (physical fences)
 - Sensor nodes attached to cows, can provide acoustic stimulus
- Features
 - Mobility: mobile
 - Connectivity: intermittent

Glacier Monitoring

- Monitor sub-glacier environments
 - Displacements, intra-glacier dynamics
 - Nodes deployed in drill holes
 - Base station on top of glacier
- Features
 - Node size: brick
 - Infrastructure: diff GPS, GSM
 - Topology: star
 - Network size: tens

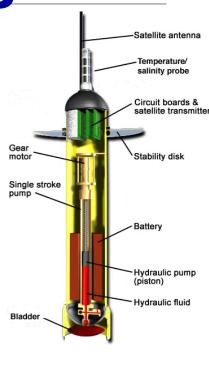


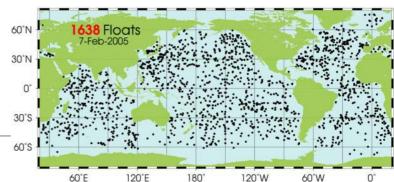
[envisense.org/glacsweb]

Bathymetry

- Impact of a wind farm on environment
 - Structure of ocean ground (sand banks, tidal activity)
 - Sensor nodes on ocean ground connected to buoy
- Features
 - Node size: bricks
 - Infrastructure: GPS

[envisense.org/secoas.htm]


Ocean Monitoring

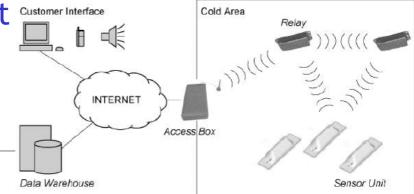

- State of the upper ocean
 - Temperature, salinity, current profile
 - 1500 free-drifting sensors
 - Cycle to 2000 m depth every 10 days
 - Satellite communication

Features

- Node cost: 15000 USD
- Node size: brick
- Mobility: mobile
- Connectivity: sporadic
- Infrastructure: satellite
- Topology: star
- Depolyment: iterative

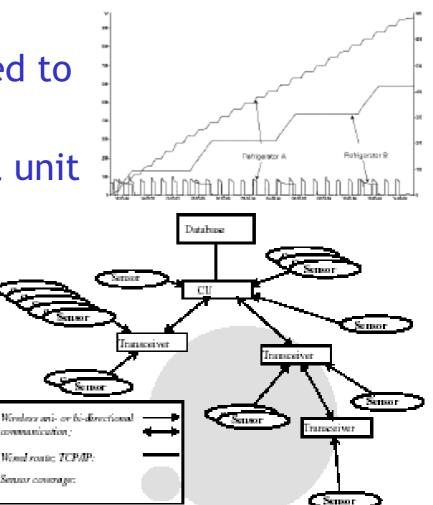
[www.argo.ucsd.edu]

Cold Chain Mgmt.


- Temperature compliance of cold chains
 - Temperature of goods from production, via distribution centers, stores, to consumer

11

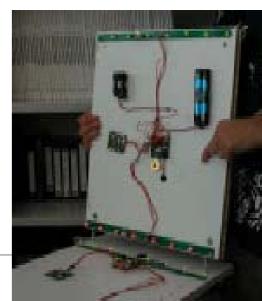
- Sensors transported with goods
- Relay units (interconnect sensors)
- Access box (gateway to Internet)
- Central ware house
- Features
 - Mobility: mobile
 - Connectivity: intermittent
 - Heterogeneity: sensors, relays, access boxes



[www.securifood.com]

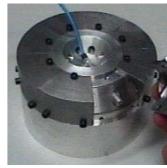
Power Monitoring

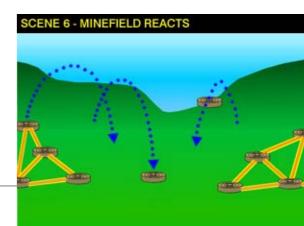
12


- Monitor power consumption in office buildings
 - Sensor nodes attached to outlets
 - Transceivers, central unit
- Features
 - Powered from power grid
 - Heterogeneity

Parts Assembly

Assist users in assembly of composite objects


- E.g., do-it-yourself furniture
- Sensors integrated into parts and tools
- Optical feedback
- Features
 - Heterogeneity: tools, different sensors
 - Lifetime: hours
 - Network size: tens
 - Topology: single hop



[www.vision.ethz.ch/projects/furniture]

Self-Healing Mine Field

- Anti-tank landmines automatically ensure coverage
 - Hop into breach line using rocket thrusters
 - Avoid use of anti-person landmindes
- Features
 - Mobility: active mobility
 - Node size: brick

[www.darpa.mil/ato/programs/SHM]

Design Space

Design Space I

- Deployment
 - Manual vs. Random
 - One-time vs. Iterative
- Mobility
 - Immobile vs. Partly vs. All
 - Occasional vs. Continuous
 - Active vs. Passive
- Cost, size, resources, energy
 - Brick, matchbox, grain, dust
- Heterogeneity
 - Homogeneous vs. Heterogeneous

Design Space II

- Infrastructure
 - Infrastructure vs. Ad hoc
- Network topology
 - Single-hop vs. Star vs. Tree vs. Graph
- Connectivity
 - Connected vs. Intermittent vs. Sporadic
- Coverage
 - Sparse vs. Dense vs. Redundant

Design Space III

- Network size
 - Tens to thousands
- Lifetime
 - Hours to years
- Other QoS requirements
 - Real-time constraints
 - Robustness
 - Tamper resistance
 - Unobtrusiveness
 - Stealth

Implications

Implications - Hardware

- Cover design space with hardware platforms
 - Are custom designs avoidable?
 - Modular approaches?
 - What is a sufficient set of platforms?
- Selection/composition of a suitable platform
 - Based on application requirements
 - Can this be automated?

Implications - Software

- Consistent programming across the design space
 - Suitable programming models and middleware abstractions?
 - Overhead of such abstractions?
 - What about cross-layer optimizations?
- A service-centric approach?
 - Service interfaces would include methods to specify appl. requirements
 - Automatic selection of appropriate service implementations

Further Implications

- Certain regions in the design space not covered by existing solutions
 - Opportunities for future research
- WSN is a multi-disciplinary research area
 - Cooperation of users, appl. domain experts, hardware designers, software developers
 - An explicit design space may help to coordinate research cooperation

Summary

- "Traditional definition" of WSN not matched by many concrete applications
- Motivation for an explicit design space
- Implications on
 - Hardware platforms
 - Software techniques
 - Collaborative research
- Details
 - K. Römer, F. Mattern: "The Design Space of Wireless Sensor Networks", IEEE Wireless Communications, Vol. 11 No. 6, Dec. 2004
 - ESF Workshop: www.vs.inf.ethz.ch/events/esf-wsn04

Ads

- Fachgespräch Sensornetze
 - ETH Zurich, March 23/24
 - www.fachgespraech-sensornetze.de
- Summer School on Sensor Networks and Smart Objects
 - Schloss Dagstuhl, Aug 28 Sept 3
 - www.vs.inf.ethz.ch/events/dag2005