SIEMENS Mobile

CASP – A Lightweight QoS Signaling Protocol

Cornel Pampu Siemens AG

Lightweight QoS Signalling for Mobile Multimedia Scenarios (LQS)

- Overall project theme: "Design of a technology independent Lightweight QoS Signalling protocol for access networks"
- Joint Project with members of Siemens (CT, ICN and ICM) together with Prof. Henning Schulzrinne, Columbia University
- In parallel to the joint activity in IETF WG NSIS (Next Steps In Signalling) with members from Siemens (RMR, CT, ICM), NEC, TU Berlin, Univ. of Ulm

SIEMEN

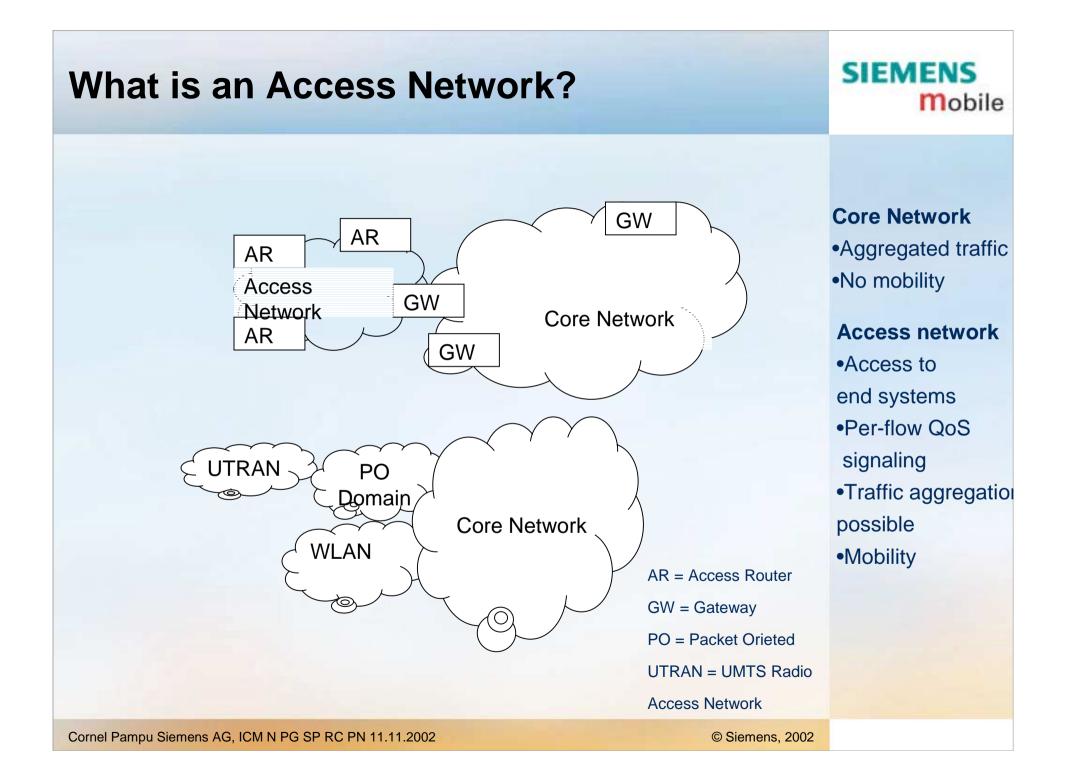
LQS: Why are existing solutions insufficient?

- inter-domain signaling
- out-of-path signaling
- signaling other than end-to-end
- bi-directional signaling
- mobility support
- multicast support usually not needed
- interworking with policy, security, TE, ...

SIEMENS

Siemens Requirements for LQS (I)

- **M** Per-flow signaling
- **M** Mobility support
- **M** Conformance to NSIS requirements / framework
 - => evaluation of usability of RSVP or a descendant
 => protocol extendible to the rest of the network
- **M** Signaling between End System and Access Network


(M – Mandatory, O – Optional / to be discussed)

SIEMENS

Siemens Requirements for LQS (II)

- **M** Support of Signaling Proxies
- **M** Signaling in the Access Network only
- M Heterogeneous Access Networks
- **M** Independence of mobility protocols
- O Interface to other layers (e.g. support of adaptive applications, interworking with link-layer QoS)
- **O Signaling across IPv4/IPv6 boundaries**
- (M Mandatory, O Optional / to be discussed)

SIEMENS

LQS: Where to use?

_ _ _ _ _

Configuration of middleboxes

Topology discovery

Measurement data collection

MPLS label distribution

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

LQS: Why now?

Signalling solution needed:

- In 3GPP for inter-domain signaling
- Between bandwidth-brokers
- In conjunction with mobility
- IETF NSIS (Next Steps In Signaling) WG chartered in Nov. 2001
 - Generates wide interest
 - most active participants mobility community (Siemens, NEC, Ericsson, Nokia, Alcatel)
 - closely followed and supported by "RSVP inventors"

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

© Siemens, 2002

SIEMENS

SIEMENS mobile

Application Signaling CASP - Cross-Protocol

What is CASP?

Generic signaling service

- establishes state along path of data
- one sender, typically one receiver
 - can be multiple receivers → multicast
- can be used for QoS per-flow or per-class reservation
- but not restricted to that

Avoid restricting users of protocol:

- sender vs. receiver orientation
- more or less closely tied to data path
 - router-by-router
 - network (AS) path

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

SIEMENS

mobile

CASP Properties

Layered

- M(essaging) layer
- C(lient) layer

Network friendly

- congestion-controlled
- re-use of state across applications

Transport neutral

- any reliable protocol
- initially, TCP and SCTP

Policy neutral

- no particular AAA policy or protocol
- interaction with COPS, DIAMETER needs work

Soft state

- per-node time-out
- explicit removal

CASP Properties

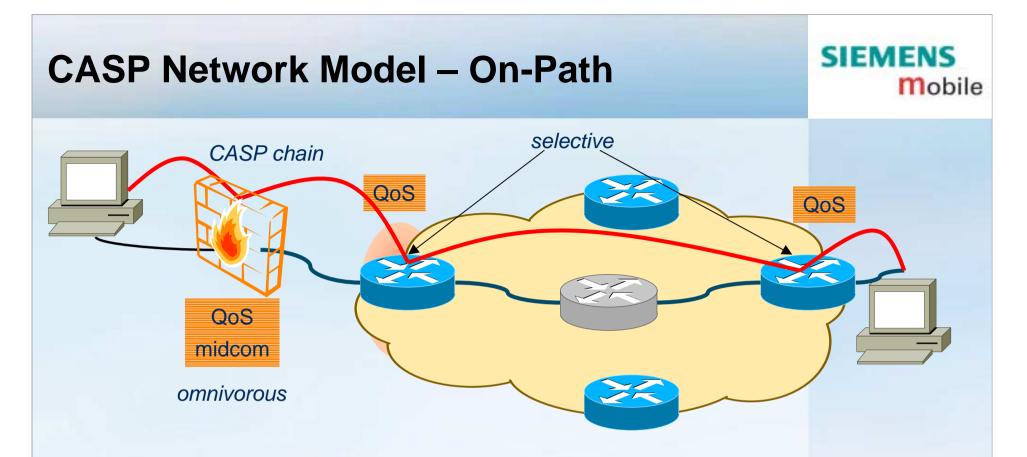
Extensible

- data format
- feature negotiation

Security protection

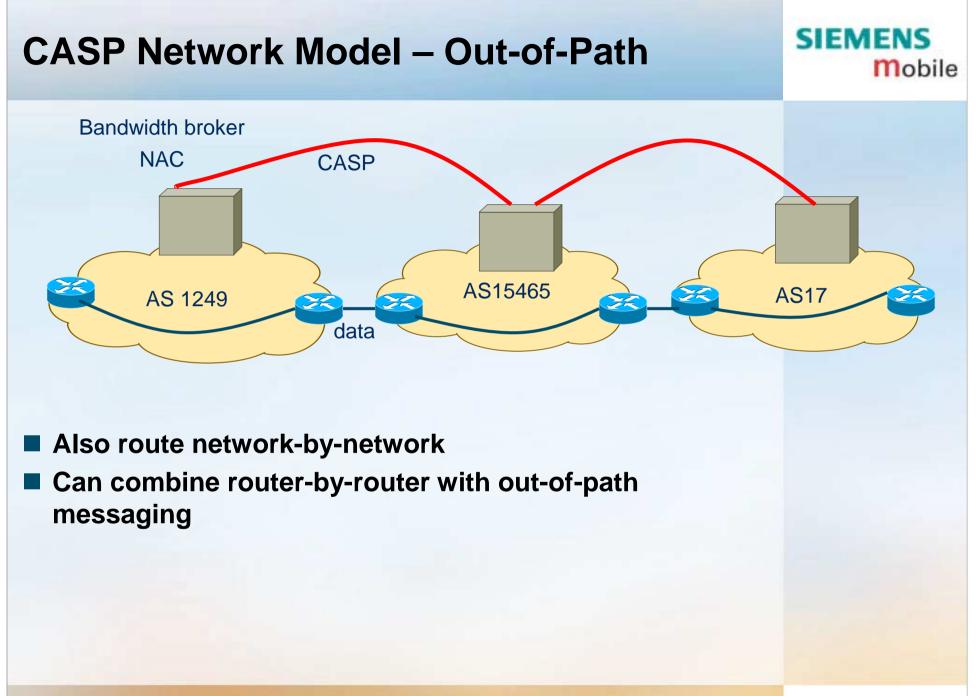

- first peer, intra and inter domain

Topology hiding

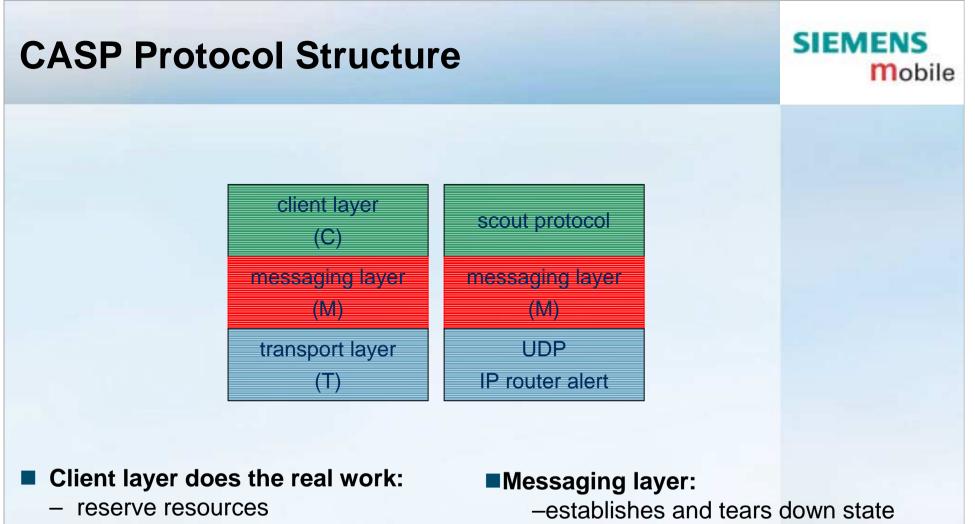

hide addresses of visited nodes

Light-weight

- message forwarding overhead
- implementation complexity
- Mobility transparent



CASP nodes form CASP chain


Not every node processes all client protocols:

- non-CASP node: regular router
- omnivorous: processes all CASP messages
- selective: bypassed by CASP messages with unknown client protocols

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

© Siemens, 2002

- open firewall ports

. . .

- -negotiates features and capabilities
- Transport layer: - reliable transport
 - e.g. TCP, SCTP

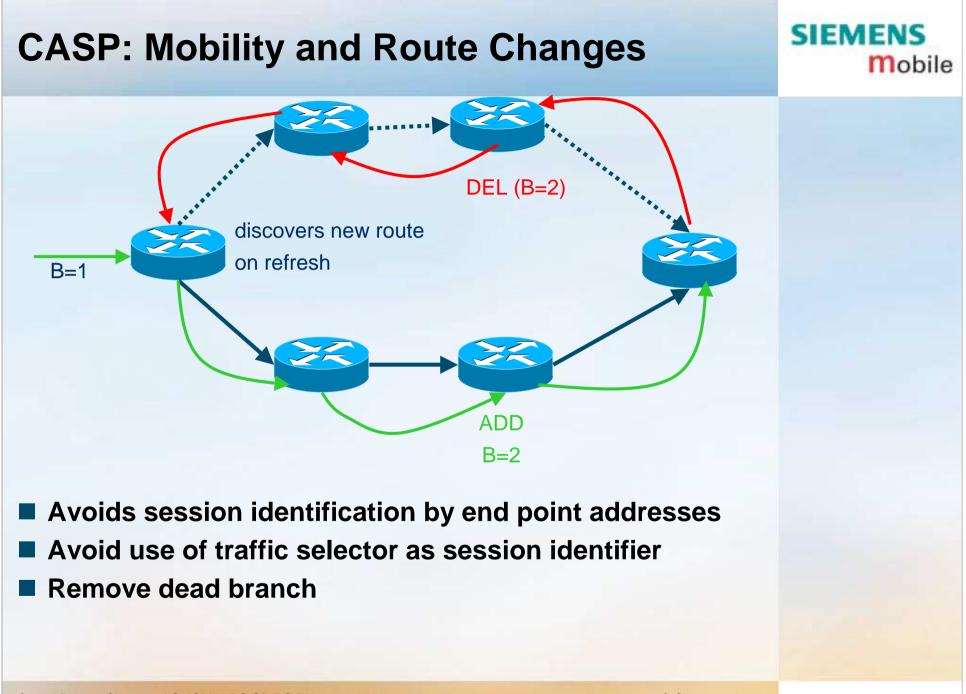
CASP Messages

Regular CASP messages

- establish or tear down state
- carry client protocol

Scout messages

- discover next hop


Hop-by-hop reliability

Generated by any node along the chain

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

© Siemens, 2002

SIEMENS

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

© Siemens, 2002

CASP Security

Security for the M(essaging) layer

- IPSec
- TLS (possibly with EAP on top of it)
- many different key exchange protocols supported (IKE, KINK, SOI, etc.)

Security for the C(lient) layer

- based on the security of the M-layer
- CMS used to selectively wrap objects and to provide protection for them

SIEMENS

mobile

SIEMENS mobile

CASP QoS Client Protocol

CASP QoS Client Protocol Feature Overview

- Direction Neutral
- Bidirectional Reservation
- Reservation Range
- Partial Reservation
- Advance Reservation
- Resource Query
- Reserve / Commit Mechanism
- Local Information

Cornel Pampu Siemens AG, ICM N PG SP RC PN 11.11.2002

© Siemens, 2002

SIEMENS

CASP QoS Client Protocol Features

- Direction Neutral
 - sender-oriented and receiver-oriented reservations
- Message reduction
- Support for adaptive application

Bidirectional Reservation

- single reservation for symmetric routes
- support of asymmetric reservation
- + Message reduction
- + Enhanced resource utilization

SIEMENS

CASP QoS Client Protocol Features

- Reservation Range
 - specification of upper and lower resource threshold
- Message reduction
- Support for adaptive application

Partial Reservation

- application may accept "blackholes" for some time
- + Enhanced resource utilization

Advance Reservation

- resource reservation at any time in future
- Potential feature for conference applications

SIEMENS

CASP QoS Client Protocol Operation

Resource Query / Response

- query resources before requesting them
- + Avoid unnecessary resource allocation

Reserve / Commit Resources

- reserve assigns resources
- commit allocates resources for exclusive use
- receiver / Sender oriented reservation
- priority object for reservation priority

+ Efficient resource usage

Local information

- authentication, DSCP, accounting
- Minimize information overhead

SIEMENS mobile

Future Plans and Ideas CASP Work

CASP – Future work

Implementation

- Message layer (in-band, hop-by-hop)
 - likely, Linux or FreeBSD
- Discovery mechanisms
 - routing-based (OSPF)
 - scout protocol
- QoS client
- out-of-band messaging
 - "bandwidth broker" or NAC model
- integrate with traffic control

Enhancements

- investigate tunnels

CASP future work

Performance analysis

- message handling
- TCP and TLS set-up overhead
- maximum number of simultaneous connections

Specify additional client protocols

- NAT and firewall control ("midcom")
- MPLS or lightpath setup?
- denial-of-service traffic filter?
- router QoS management → gather performance statistics

Interaction with AAA

- authentication, authorization and accounting
- something other than COPS?

- submit Internet Draft to IETF NSIS working group
- pursue standardization

© Siemens, 2002

SIEMENS

mobile