

Analysis of the Throughput/Energy Trade-off in Wireless Networks

ITG 5.2.4 Workshop/November 2012 "Green IT in Wireless Access Networks"

Peter Dely (Karlstad University, Sweden)

Problem Description

- Energy costs are increasing faster than operator revenues
- Base and peak consumption in WLAN APs are almost the same

Source: "Energino: a Hardware and Software Solution for Energy Consumption Monitoring", Karina Gomez et al.

- If you want to save energy: switch off the AP!
- But: switching off APs reduces network coverage and impacts performance

Option 1 – High Performance

Option 2 – Low Energy

Comparison Option 1 and 2

	Throughput Station 1	Throughput Station 2	Sum Throughput	Energy Consumption AP1	Energy Consumption AP1	Sum Energy Cons.
Option 1	30 Mbit/s	30 Mbit/s	60 Mbit/s	4.7 W	4.7 W	9.4 W
Option 2	12 Mbit/s	10 Mbit/s	22 Mbit/s	4.7 W	0 W	4.7 W 🔻

Throughput - Energy Tradeoff

Throughput - Energy Tradeoff

Sum Energy Consumption

Energy – Throughput Tradeoff

Sum Energy Consumption

Sum Throughput

Questions Discussed in this Presentation

- 1. How to find points on the Pareto front?
- 2. Which point to choose?
- 3. What are the trade-offs in a WLAN deployment?

1. How to find points on the Pareto front?

Cost/Utility Functions

Network Energy Cost

 Sum of energy consumption of all APs

Energy Consumption (W)

- Base consumption + Energy per bit * transfer rate
- Utility = (-1) * Cost

Network Throughput Utility

Network throughput utility is sum of user utilities

User Utility

- User utility = log(Transfer Rate)
- Proportional fairness of user rates

Constraints

Connection

- Each STA must be connected to exactly one AP
- STAs can only connect to powered-on APs
- STAs can only connect to APs that exceed a minimum RSSI threshold

Capacity

- PHY rate depends on path loss, i.e. AP-STA distance
- Transmissions occupy the channel for 1/PHYRate seconds per bit
- Total channel occupation must be < 1 for all channels

Coverage

- Areas with STA need to be covered for sure
- APs need to provide coverage for at least k% of the total area

Optimization Model Formulation

- Aim: Formulate the model as Mixed Integer Linear Program (MILP)
- MILPs can be solved efficiently to optimality
- MILP computes
 - Which AP to switch off
 - Which AP a STA should be connected to
 - What data rate the STA gets
- Requirements for a MILP:
 - One linear objective function
 - Linear (in)equalities as constraints
 - Variables are continuous or discrete

Optimization Model Formulation

Problem 1:

- Log function of user utility is not linear
- → Piece-wise linear approximation

Problem 2:

- Two objective functions
- Weighted sum of scaled objective functions

Optimization Model Formulation

Problem 3:

- Constraint: Any point in the area to cover needs to be in communication distance of an powered-on AP
- Find all areas that are only covered by one AP

Ensure that these APs are powered-on + each overlap is covered

Variant of Problem 3:

- k% of the total area need to be in communication distance of an powered-on AP
- Compute area of each section that is only covered by one AP
- Ensure that sum of covered areas is k% of total area

Generating the Pareto Front

maximize
$$\alpha * U'_{Energy} + (1 - \alpha) * U'_{Throughput}$$

subject to the contraints described before

- Vary α to get points on the Pareto front
- However: with this approach we cannot find points on non-convex portions of the Pareto front
- Solution: Adaptively add new constraints such as
 - U'_{Energy} ≥ β₁
 - U'_{Throughput} ≥ β₂

2. Which point to choose?

Minimizing the Distance to the Goal

3. What are the trade-offs in a WLAN deployment?

Numerical Simulation Settings

- Optimization model is implemented in CPLEX
- Exponential path loss with factor 4.5 (indoor/home environment)
- Receiver sensitivity for Atheros IEEE 802.11a cards
- APs are arranged in a grid so that all points are covered at least 24 Mbit/s PHY rate (if all APs are on)
- Stations are randomly and uniformly distributed in a rectangular area
- Orthogonal channel assignment

Grid topology with 10 STAs and 4 APs

Impact of Coverage Constraint

Conclusions and Future Work

Conclusions

- 1. Major energy saving is possible with little throughput degradation
- 2. Trade-off is in particular good when there are many stations in the network
- 3. Pareto front can be non-convex \rightarrow more difficult to generate

Future work

- Simulations on larger realistic instances
- Consider dynamic users arrivals
- Design of a heuristic that finds a good solution