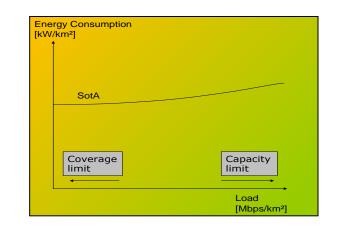
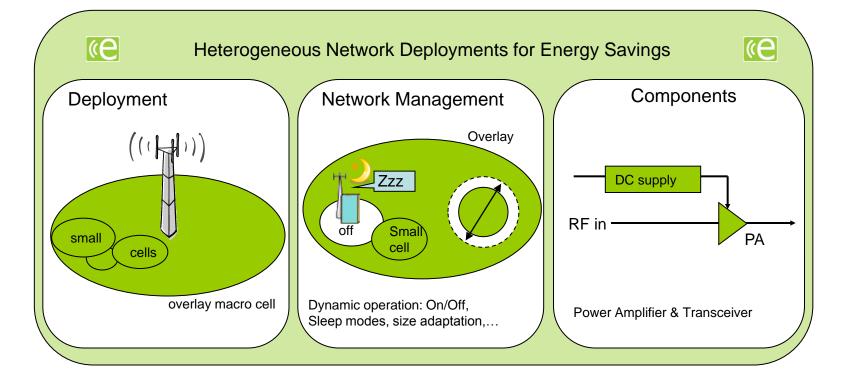

Dynamic Bandwidth Management for Energy Savings in Wireless Base Stations

Ulrich Barth Anton Ambrosy, Michael Wilhelm, Wieslawa Wajda, Oliver Blume

ITG 5.2.4 Workshop: "Green IT in Wireless Access Networks", Berlin Nov 29th

EC FP7 project EARTH




Alcatel·Lucent

Green Wireless Network "Power follows load"

Improving Load Dependence of BS Power Consumption

- Integrated solution of TRX hardware and RRM
- Combination with other hardware improvements
- System level simulation of energy saving

AT THE SPEED OF IDEAS™

Alcatel · Lucent

The Wireless Box

 If we take the wireless box as a black box, its main functionality is taking in traffic demand and providing measureable performance

Traffic model:

Diverse traffic types and varied spatial-temporal traffic distribution in the network, among the layers of equipments

The Engine of Wireless Box

Power model:

They way power dissipates in infrastructure equipment

and the way energy

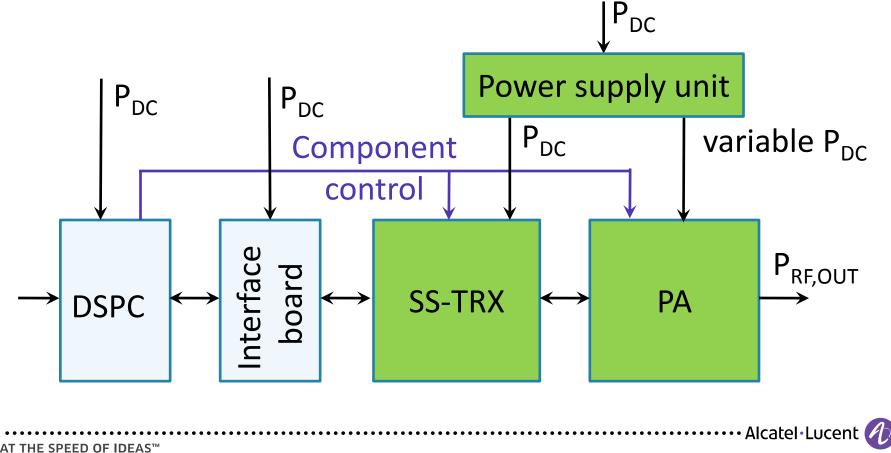
consumed in the network

Engine Performance:

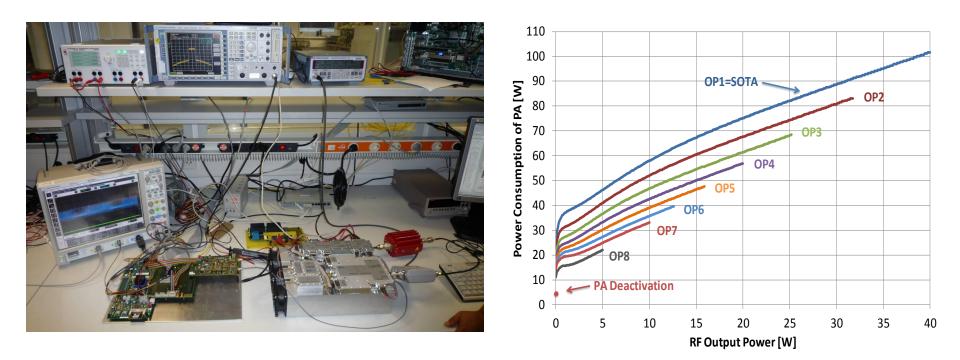
Spectrum efficiency, energy efficiency, deployment efficiency, network throughput, service delay, etc.

to satisfy the requirement, meanwhile, generating corresponding operating cost such as energy consumption.

Deployment model:


The layout of layers of diverse network equipment and the way they function together to serve the traffic

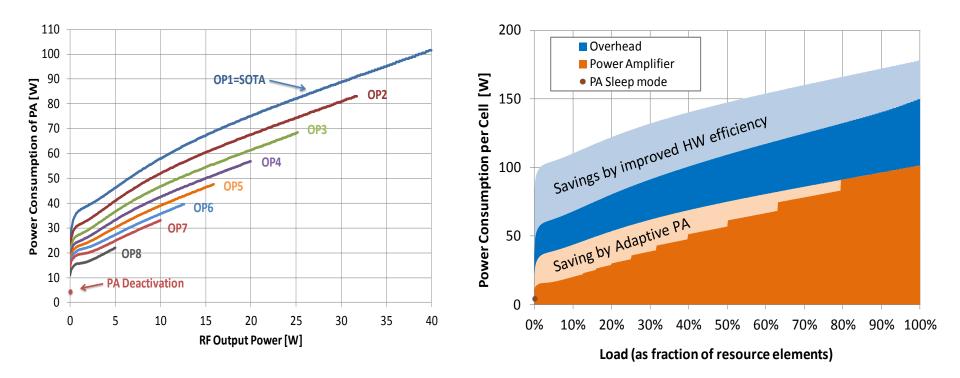
Adaptive Transceiver for Macro-Cell BS


Energy Adaptive Power Amplifier

Features for enabling EE solutions

- Operating point adjustment (OPA)
- Component deactivation (CD)

Adaptive Macro TRX Hardware Prototype Measurement results of power modes

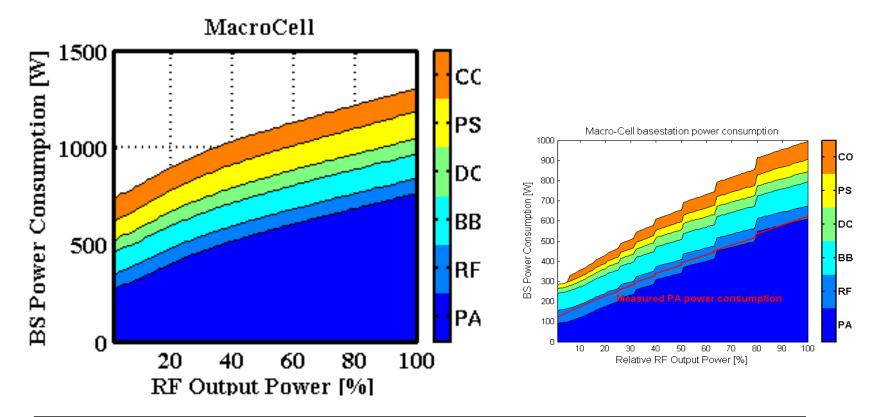


- Proof-of-concept for energy saving by adaptive
 - operation point (OP) adjustment and
 - component deactivation (CD) on OFDM symbol level

Alcatel Lucent

Power Amplifier improvements Realising saving potentials at low load

Adaptive TRX (EARTH project)


- \rightarrow Multiple operational states of the power amplifier (changing bias voltage)
- \rightarrow Fast Sleep mode on OFDM symbol granularity
- \rightarrow Complemented by adaptive BB processing, cooling,...

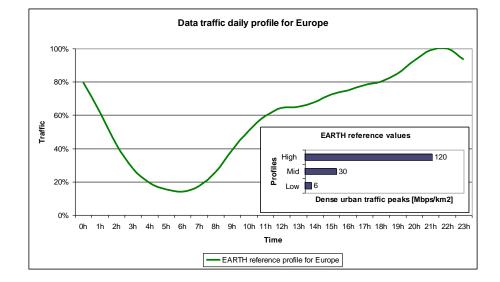
AT THE SPEED OF IDEAS™

Alcatel Lucent 🍊

Power Amplifier improvements SotA and EARTH power model

Resulting EARTH Macro BS power model

 \rightarrow Still significant offset power consumption


→ **Resource Management** has to leverage the adaptive hardware

AT THE SPEED OF IDEAS™

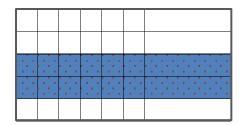
Alcatel · Lucent

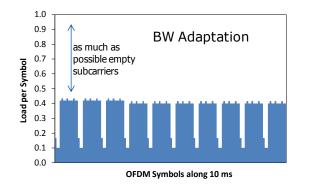
Daily traffic profile

Deployment area	High traffic profile
Dense urban	120 Mbps/km ²
Urban	40 Mbps/km ²
Suburban	20 Mbps/km ²
Rural	4 Mbps/km ²

- Busy Hour Traffic demand from user density and monthly rate
- Note : this is already on the high end! Latest EARTH D2.3 scenarios:

Deployment area	20% heavy users	50% heavy users	100% heavy users
Dense urban	28 Mbps/km ²	52 Mbps/km ²	92 Mbps/km ²
Urban	9 Mbps/km ²	17 Mbps/km ²	31 Mbps/km ²
Suburban	5 Mbps/km ²	9 Mbps/km ²	19 Mbps/km ²
Rural	1 Mbps/km ²	2 Mbps/km ²	3 Mbps/km ²

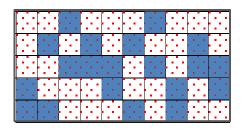

- Busy hour is 60% above daily average
- At night time traffic is 7 times lower than in Busy Hour

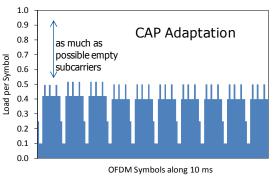


• Alcatel • Lucent 🍊

Impact of Scheduling Strategy on Power Level with adaptive TRX hardware

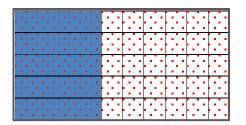
Bandwidth Adaptation

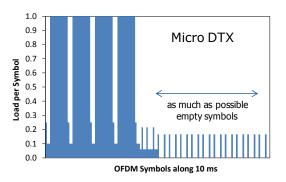




- Avoids pilot overhead
- Not standard compliant
- Uses Operation Point adjustment

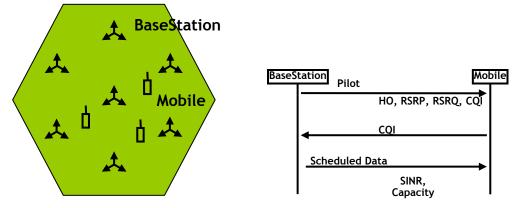
AT THE SPEED OF IDEAS™


Capacity Adaptation



- Channel diversity maintained
- 3GPP compliant
- Uses Operation Point adjustment

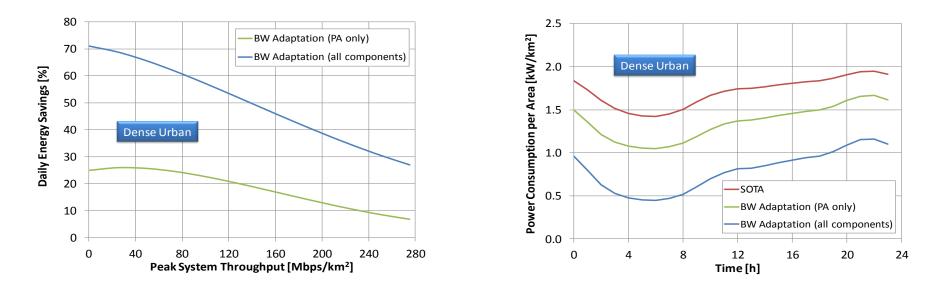
Micro Sleeps



- Fastest adaptation
- · Limited by switching transients
- Uses Component Deactivation

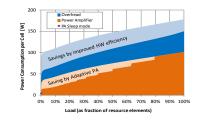
Dynamic System Level Simulator

- Dynamic system level simulator
 - User distribution, movement
 - Video traffic model, scheduling
 - Power modell, efficiency



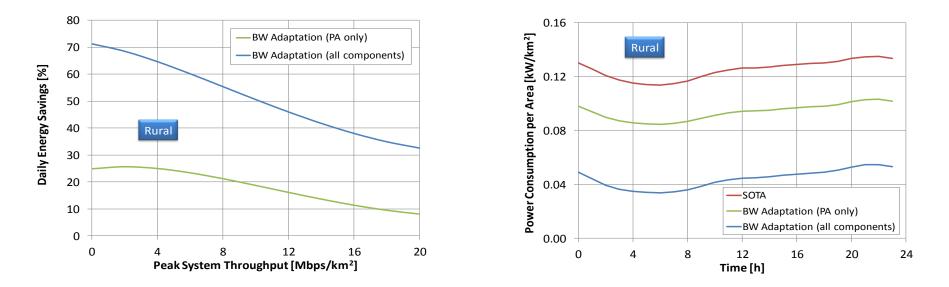
Available Features (SON)	State	New Features (EE)	State
Flexible Playground, wrap around		Power Model	
BaseStation Transceiver		User Traffic Model [video]	
Mobile		Non-uniform user distribution	
User Traffic Model [full queue]		Heterogeneous Cells	
Handover [best connected]			
Pilot Signals		EE Scheduler (BW adaptation)	
Scheduling		Interference coord. (Reuse)	
SINR calculation			
Capacity calculation			

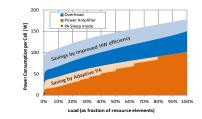
Alcatel Lucent


Energy Aware Scheduling Dense Urban Scenario

500m Inter Site Distance, 3x40W RRH, SISO configuration, 120Mbps/km² in Busy Hour

Daily energy savings

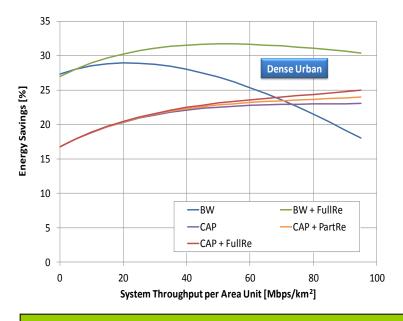

- 20.9% from adaptive TRX & BW adaptation
- 53.6% with additional load adaptive overhead


Energy Aware Scheduling Rural Scenario

1732m Inter Site Distance, 3x40W RRH, SISO configuration, 4Mbps/km² in Busy Hour

Daily energy savings

- 25.0% from adaptive TRX & BW adaptation
- 64.7% with additional load adaptive overhead



AT THE SPEED OF IDEAS™

Energy Aware Scheduling Extension to MIMO

- Simulator extended to 2x2 MIMO (2x 20W output per sector)
- Capacity Adaptation and MicroDTX
 - Partial reuse scheme: Roll-over of frequency use within 10MHz
 - Combinations of adaptation schemes with microDTX

- Significant effect of the adaptation scheme
 - Cross-over between BW and Cap adaptation
 - BW better below 70Mbps/km²
- Spectral reuse brings only minor additional savings (within 10MHz band)
- For high system throughput
 - microDTX on top of BW adapt (when highest BW is required)
 - adds significant savings (>5%)

Minor saving from interference mitigation. More important to chose the optimum scheduling strategy for each traffic load .

Alcatel
Lucent

Conclusion

- No/low load situations offer potential for energy savings!
 - Basic LTE deployments are inefficient at low load
 - In many cells only 10-20% of the resources are used for data transmission
- Network resources should be adapted to traffic demand!
 - RAT, cells, sectors, carriers, bandwidth, MIMO antennas, etc
- Scalable hardware with adaptation to traffic load is key !
 - Component de-activation, operating point adjustment, etc.
 - Facilitates bandwidth adaptation, capacity adaptation and microDTX

Integrated solutions are able to cut the energy consumption of an LTE network by ~70%, with preserved QoS!

Daily saving	Adaptive PA, reuse 1	Adaptive PA, reuse 3	Adaptive BS, reuse 1	Adaptive BS, reuse 3
Dense Urban @ 120 Mbps/km ²	20.9%	30.8%	53.6%	64.9%
Rural @ 4 Mbps/km ²	25.0%	28.5%	64.7%	68.2%

AT THE SPEED OF IDEAS™

Acknowledgements

The work of the project "EARTH" is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreement n° 247733.

Alcatel
Lucent

